
[Type here]

Enduring Security Framework

December 2023

Securing the Software Supply Chain:
Recommended Practices for Managing

Open-Source Software
and Software Bill of Materials

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs ii

Executive Summary

Cyberattacks target an enterprise’s use of cyberspace to disrupt, disable, destroy, or maliciously

control a computing environment or infrastructure, destroy the integrity of the data, or steal

controlled information.1

Cyberattacks such as those executed against SolarWinds and its customers—and the exploits that

take advantage of vulnerabilities such as Log4j—highlight weaknesses within software supply

chains. This issue spans both commercial and open-source software and impacts private and

government enterprises. Accordingly, there is an increased need for software supply chain security

awareness and cognizance regarding the potential for software supply chains to be weaponized by

nation-state adversaries using similar tactics, techniques, and procedures (TTPs).

In response, the White House released an Executive Order on Improving the Nation’s Cybersecurity

(EO 14028)2 that established new requirements to secure the federal government’s software supply

chain. The Enduring Security Framework (ESF) 3, led by a collaborative partnership across private

industry, academia and government, established the Software Supply Chain Working Panel, which

released a three-part Recommended Practices Guide series to serve as a compendium of suggested

practices to help ensure a more secure software supply chain for developers, suppliers, and

customer stakeholders.

Similarly, the ESF Software Supply Chain Working Panel established this second phase of guidance

to provide further details for several of the Phase I Recommended Practices Guide activities. This

guidance may be used to describe, assess, and measure security practices relative to the software

lifecycle. Additionally, the suggested practices listed herein may be applied across a software

supply chain’s acquisition, deployment, and operational phases.

The software supplier is responsible for liaising between the customer and software developer.

Accordingly, vendor responsibilities include ensuring the integrity and security of software via

contractual agreements, software releases and updates, notifications, and the mitigation of

vulnerabilities. This guidance contains recommended best practices and standards to aid customers

in these tasks.

This document aligns with industry best practices and principles that software developers and

software suppliers can reference. These principles include managing open-source software and

software bills of materials to maintain and provide awareness about software security.

1 Committee on National Security Systems (CNSS)

2 https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-

improving-the-nations-cybersecurity/

3 ESF is a cross-sector working group that operates under the auspices of Critical Infrastructure

Partnership Advisory Council (CIPAC) to address threats and risks to the security and stability of

U.S. national security systems. It is comprised of experts from the U.S. government as well as

representatives from the Information Technology, Communications, and the Defense Industrial

Base sectors. The ESF is charged with bringing together representatives from private and public

sectors to work on intelligence-driven, shared cybersecurity challenges.

https://www.cnss.gov/cnss/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs iii

DISCLAIMER

DISCLAIMER OF ENDORSEMENT

This document was written for general informational purposes only. References to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, do

not constitute or imply an endorsement, recommendation, or favoring by the United States

Government. This document is intended to apply to a variety of factual circumstances and industry

stakeholders, and the information provided herein is advisory in nature. The guidance in this

document is provided “as is.” Once published, the information within may not constitute the most

up-to-date guidance or technical information. Accordingly, the document does not, and is not

intended to, constitute compliance or legal advice. Readers should confer with their respective

advisors and subject matter experts to obtain advice based on their individual circumstances. In no

event shall the United States Government be liable for any damages arising in any way out of the

use of or reliance on this guidance.

PURPOSE

The National Security Agency (NSA), the Office of the Director of National Intelligence (ODNI), and

the Cybersecurity and Infrastructure Security Agency (CISA) developed this document in

furtherance of their respective cybersecurity missions, including their responsibility to develop and

issue cybersecurity recommendations and mitigation strategies. This information may be shared

broadly to reach all appropriate stakeholders.

CONTACT

Client Requirements / Inquiries: Enduring Security Framework nsaesf@cyber.nsa.gov

Media Inquiries / Press Desk:

 NSA Media Relations, 443-634-0721, MediaRelations@nsa.gov

 ODNI Media Relations, dni-media@dni.gov

 CISA Media Relations, 703-235-2010, CISAMedia@cisa.dhs.gov

mailto:nsaesf@cyber.nsa.gov
mailto:MediaRelations@nsa.gov
mailto:CISAMedia@cisa.dhs.gov

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs iv

Table of Contents

Executive Summary .. ii

DISCLAIMER ... iii

Table of Contents .. iv

1 Introduction ... 1

1.1 Background ... 2

1.2 Document Overview.. 2

2 Open-Source Software Management ... 3

2.1 Primary Considerations with the use of Open-Source Software .. 4

2.2 Licensing .. 4

 License Compliance ... 5

2.3 Export Controls ... 5

2.4 Software Bill of Materials Overview ... 6

3 Creating and Maintaining a Company Internal Secure Open-Source Repository 7

3.1 Open-Source Software Adoption Process .. 9

3.2 Vulnerability and Risk Assessment .. 11

4 Open-Source Software Maintenance, Support and Crisis Management .. 13

4.1 Maintaining Open-Source Software .. 13

4.2 Crisis Management .. 15

 Crisis Definition ... 15

 Crisis Response Concept of Operations ... 15

 On-Premise Versus SaaS .. 18

4.3 Code Signing and Secure Software Delivery ... 18

 Secure Code Signing Requirements .. 18

 Secure Software Update Delivery .. 20

5 Software Bill of Materials Creation, Validation, and Artifacts ... 21

5.1 Software Bill of Materials Background .. 22

 Software Management and SBOMs ... 25

 Software Bill of Materials Generation Tools and Training .. 27

 Software Composition Analysis and the VEX Format .. 29

 License and Export Control .. 31

 Software Bill of Materials Validation .. 33

5.2 Supplier Activities .. 33

 Software Bill of Materials Validation and Verification Tools ... 34

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs v

Appendix A: Ongoing Efforts ... 35

Appendix B: Secure Supply Chain Consumption Framework (S2C2F) ... 37

Appendix C: References .. 41

Appendix D: Acronym List ... 43

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 1

1 Introduction

Unmitigated vulnerabilities in the software supply chain continue to pose a significant risk to
organizations and our nation. This paper builds on the previously released Recommended Practices

Guide for a software supply chain’s development, production and distribution, and management

processes, to further increase the resiliency of these processes against compromise. This guidance

also builds on and supports the Office of Management and Budget memorandum on Enhancing the

Security of the Software Supply Chain through Secure Software Development Practices (M-23-16)4.

All organizations, whether they are a single developer or a large industry company, have an

ongoing responsibility to maintain software supply chain security practices in order to mitigate

risks, but the organization’s role as a developer, supplier or customer of software in the software

supply chain lifecycle will continue to determine the shape and scope of this responsibility. The

information contained in this guidance supports development activities of a single developer as

well as activities of large industry companies. Activities should be planned for and acted upon one

at a time, solidifying the new technique in the process before adding the next to be successful.

Because the considerations for securing the software supply chain vary, this document which

focuses on the management of “Open-Source Software (OSS) and Software Bill of Materials (SBOMs)”

will help continue to foster communication between the different roles and among cybersecurity

professionals that may facilitate increased resiliency and security in the software supply chain

process.

Organizations that include OSS in the development of their products are encouraged to proactively

manage OSS risks as a part of evolving secure software development practices. It is recommended

that software development and supplier organizations read and implement the strategies described

here. Recent high profile software supply chain incidents have prompted acquisition organizations

to assign supply chain risk assessments to their buying decisions. Software developers and

suppliers should improve their processes, and reduce the risk of harm, not just to employees and

shareholders, but also to those affected by the use of their software.

To help achieve this, this document recommends seven areas of improvement related to software

development and OSS. These areas are designed to allow an organization to mature their software

development process and although there are many tools that can be used, no tool will be promoted

over another. The seven areas are:

 Open-Source Selection Criteria,

 Risk assessment,

 Licensing,

 Export control,

 Maintenance,

 Vulnerability response, and

 Secure Software and SBOM Delivery.

4 https://www.whitehouse.gov/wp-content/uploads/2023/06/M-23-16-Update-to-M-22-18-Enhancing-Software-
Security.pdf

https://www.whitehouse.gov/wp-content/uploads/2023/06/M-23-16-Update-to-M-22-18-Enhancing-Software-Security.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/06/M-23-16-Update-to-M-22-18-Enhancing-Software-Security.pdf

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 2

1.1 Background

Common methods of compromise used against software supply chains continue to include

exploitation of software design flaws, incorporation of vulnerable third-party components into a

software product, infiltration of the supplier’s software development lifecycle with malicious code

prior to the final software product being delivered, and injection of malicious software that is built

and then deployed by the customer.

Stakeholders should continually mitigate security concerns specific to their area of responsibility.

However, other concerns may require a mitigation approach that dictates a dependency on another

stakeholder or a shared responsibility by multiple stakeholders. Dependencies that are

inadequately communicated or addressed may lead to vulnerabilities and the potential for

compromise. Transparency into the software supply chain is necessary to manage that risk.

1.2 Document Overview

The four sections of this document and the associated activities of the Secure Software

Development Framework (SSDF)5 they implement are identified in Table 1 below.

Table 1: Associated SSDF Activities

Section SSDF Activity(ies) Implemented

2. Open-Source Software Management Prepare the Organization (PO)

3. Creating and Maintaining a Company
Internal Secure Open-source Repository

 Protect the Software (PS)
 Produce Well-Secured Software (PW)
 Respond to Vulnerabilities (RV)

4. Maintenance, Support and Crisis
Management

 Protect the Software (PS)
 Respond to Vulnerabilities (RV)

5. SBOM Creation, Validation and Artifacts

 Protect the Software (PS)
 Produce Well-Secured Software (PW)
 Respond to Vulnerabilities (RV)

The guidelines and specifications identified within this document are evolving, refer to the

following resources for the latest recommendations and updates:

 Cybersecurity and Infrastructure Security Agency (CISA) Software Bill of Materials6

5 https://csrc.nist.gov/Projects/ssdf
6 CISA, Software Bill of Materials, https://www.cisa.gov/SBOM

https://csrc.nist.gov/Projects/ssdf
https://www.cisa.gov/SBOM

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 3

This document also contains the following appendices:

Appendix A: Ongoing Efforts

Appendix B: Secure Supply Chain Consumption Framework (S2C2F)7

Appendix C: References

Appendix D: Acronym List

2 Open-Source Software Management

This document is a continuation of the work released in “Securing the Software Supply Chain,

Recommended Practices Guide For Developers”8 and “Securing the Software Supply Chain

Recommended Practices Guide For Suppliers.9 The previous work included an examination of how

OSS is incorporated into the development, build and release environments. In this work, we go into

more detail on OSS adoption and the things to consider when evaluating and deploying an open-

source component into an existing product development environment. OSS components may have

downstream dependencies that contain embedded vulnerabilities. Therefore, we pay particularly

close attention to how these modules are used and bundled with the software at release. This

section describes the overall OSS acceptance process, to include its composition, the process and

procedures used when adopting open-source software, and the management, tracking and

distribution of approved software components using an SBOM. The roles of the developer and

supplier are defined as:

 Developer - The developer, an employee of the supplier, is the originator of the source

code for a product who identifies the need for OSS and/or third-party components to

meet the specific need of a product. Once identified, they obtain the OSS, check for license

and vulnerability issues, integrate it into the product, and create an SBOM.

 Supplier - The supplier is the vendor of a software product or library. They validate that

the product, as developed, meets all development requirements, as well as licensing,

export control and vulnerability assessments guidelines defined as shipping criteria for

use of the product.

 Both Developer and Supplier - In small organizations, these tasks may be performed by

the same team.

7 https://github.com/ossf/s2c2f
8 https://media.defense.gov/2022/Sep/01/2003068942/-1/-

1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
9 https://media.defense.gov/2022/Oct/31/2003105368/-1/-

1/0/SECURING_THE_SOFTWARE_SUPPLY_CHAIN_SUPPLIERS.PDF

https://github.com/ossf/s2c2f
https://media.defense.gov/2022/Sep/01/2003068942/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
https://media.defense.gov/2022/Sep/01/2003068942/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
https://media.defense.gov/2022/Oct/31/2003105368/-1/-1/0/SECURING_THE_SOFTWARE_SUPPLY_CHAIN_SUPPLIERS.PDF
https://media.defense.gov/2022/Oct/31/2003105368/-1/-1/0/SECURING_THE_SOFTWARE_SUPPLY_CHAIN_SUPPLIERS.PDF

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 4

Recommended activities for open-source adoption by developers and suppliers include:

 Developer

o Identify potential OSS solutions for consideration.

o Create an internal secure repository which is maintained using the guidelines in

section 4.1 “Maintain Open-Source Software.”

o Integrate OSS into the secure build process of the product using the same

guidelines as with the in-house developed components.

o Track updates to OSS or third-party components.

o Produce updates of the product to specifically address changes to the OSS.

 Supplier

o Monitor for license change issues and vulnerabilities of the OSS included in any

third-party software.

o Manage updates of the product that specifically address changes to the OSS. The

use of an SBOM tracking mechanism is strongly recommended to aid in ensuring

the ongoing integrity of the product.

2.1 Primary Considerations with the use of Open-Source Software

The primary considerations with the use of open source in a product or service offering are

Selection, Risk assessment, Licensing, Export control, Maintenance, Vulnerability response and

Secure Software Delivery. Even before the adoption process outlined in section 3.1 “Open-Source

Software Adoption Process” is initiated, the software should first be evaluated using precursory

analysis such as the use of the National Vulnerability Database (NVD) to determine whether the

software should be considered for selection. Once selected, additional analysis as defined in section

3.2 “Vulnerability and Risk Assessment” is used to fully understand the risk associated with the
software. If acceptable, the software is integrated within the development process defined in

“Creating and Maintaining a Company Internal Secure Open-Source Repository. When products are

released, they follow the guidelines for maintenance and vulnerability response described in

section 4 “Maintenance, Support and Crisis Management.” The process to securely deliver software

and SBOMs is outlined in section 5 "SBOM Creation, Validation and Artifacts." Additional

considerations for licensing and export control are covered in section 2.2 “Licensing” and section

2.3 “Export Controls.”

2.2 Licensing

Licensing considerations should be applied when considering OSS for adoption. An OSS license

governs the use, modification, and distribution of open source. OSS licenses can impose obligations

and constraints which may have an impact on software distribution.

Suppliers, preferably working with legal assistance, determine and make known to their

developers, any restrictions of use, and provide the language that should be displayed and agreed to

by the customer obtaining the product.

Scanning with a tool designed to identify open source within a product is useful, however the best

practice is to independently track the OSS used in your products (with the applicable OSS name,

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 5

version, and download location). OSS in third-party software used in your products should be

scanned10 and approved. If OSS incorporates other OSS (which is sometimes called a dependency or

transitive dependency), this incorporated OSS should also be scanned and approved.

 License Compliance

Developers are expected to be aware of and adhere to OSS license requirements11 such as

stipulations for the use of credit banners and the presentation of the acceptance of usage during

initial installation of the product. Developers and suppliers should also ensure that:

 Their organization has the necessary legal rights to use the OSS you select,

 Their use of OSS may not taint or encumber their proprietary code with code sharing

obligations or otherwise negatively affect intellectual property rights12; and

 They have read and agree to comply with the associated license policy as well as the

terms of the licenses for all OSS you use.

While this may be a lot for individual programmers to track, organizations can provide tools to

make this consideration easy or transparent for the humans at keyboards. The Open-Source

Initiative13 provides detailed information about the various license types and associated usage

conditions (for tools that can help scan for license compliance see section 5.1.4 “License and Export

Control” for further information).

2.3 Export Controls

Some countries have export regulations that may require anyone incorporating open-source

content into their products ensure the included open-source project meets those regulations. In the

US, they are the Export Administration Regulations14 (EAR). The European Union15 (EU) and other

jurisdictions have a similar set of regulations.

Legal guidance for export control concerns is necessary to include in your OSS process. However, it

should be noted that anything, including an OSS item, may be added to the EAR’s Commerce Control

List16 (CCL) at any time regardless of the terms of a license agreement between commercial parties

or if someone posts it online with an open-source agreement. Thus, it will always be prudent to

verify a specific package is not on the CCL.

In summary, for many of those in the US who wish to include open source software in a product or

service should (1) take steps to ensure that the open source software is indeed publicly available

without restriction and, (2) if it includes non-standard encryption or is related to neural computing,

10 See section 5.1.3 “Software Composition Analysis and the VEX Format of this document.
11 https://opensource.org/osd/
12 https://opensource.org/licenses/review-process/
13 https://opensource.org/licenses
14 https://www.bis.doc.gov/index.php/regulations/export-administration-regulations-ear
15 https://www.ecfr.gov/cgi-bin/text-idx?node=pt15.2.734&rgn=div5#se15.2.734_12
16 https://www.bis.doc.gov/index.php/documents/regulations-docs/2329-commerce-control-list-index-3/file

https://opensource.org/licenses
https://www.bis.doc.gov/index.php/regulations/export-administration-regulations-ear
https://www.ecfr.gov/cgi-bin/text-idx?node=pt15.2.734&rgn=div5#se15.2.734_12
https://www.bis.doc.gov/index.php/documents/regulations-docs/2329-commerce-control-list-index-3/file

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 6

advise the government as directed in the EAR. Those in other countries should consult with their

government.

When adopting OSS, developers should extract export-related information such as cryptographic

algorithms used in the OSS and any other cryptographic dependencies the OSS requires. During the

development of the product, developers may determine the best way to adhere to the export

requirements defined by policies set forth by suppliers and may determine that a second, distinct

product having a subset of capabilities may be required as the final deliverable for some customers.

Developers may also be required to make known the use of Personally Identifiable Information

(PII) that may be used within the OSS.

Suppliers may provide export guidance to include implementation criteria of the product under

development. Once packaged, suppliers validate the process and policies defined have been

adhered to during the development of the product. Suppliers may use automated tools to perform

product package export validation, and the validation process may vary depending on where the

product is being sold and used. Suppliers understand where and when export controls need to be

considered and handle the distribution of the product based on those criteria.

2.4 Software Bill of Materials Overview

A SBOM is used to define all aspects of a product to include open source and commercial third-party

software. SBOMs often include licensing data for components. There are two primary widely used

data formats that express the syntax of an SBOM:

 SPDX17 is “an open standard for communicating software bill of material information,

including components, licenses, copyrights, and security references.” It originated with

the Linux Foundation and is an international open standard (International Organization

for Standardization/International Electrotechnical Commission (ISO/IEC 5962:202118).

 CycloneDX19 “is a full-stack SBOM standard designed for use in application security

contexts and supply chain component analysis.” It originated within the Open Web

Application Security Project (OWASP)20 community. CycloneDX has expanded to include

a wide range of other, related use cases, including software-as-a-service BOM

(SaaSBOM)21

Software Identification (SWID) Tagging22 is an international standard [ISO/IEC 19770-2:201523]

that originated from the National Institute of Standards and Technology (NIST).

17 https://spdx.dev/
18 https://www.iso.org/standard/81870.html
19 https://www.cyclonedx.org/
20 https://www.owasp.org/
21 https://cyclonedx.org/capabilities/saasbom/
22 NIST Software Identification (SWID) Tagging, https://csrc.nist.gov/projects/Software-Identification-SWID

23 https://www.iso.org/cms/%20render/live/en/sites/isoorg/contents/data/standard/06/56/65666.html

https://spdx.dev/
https://www.iso.org/standard/81870.html
https://www.cyclonedx.org/
https://www.owasp.org/
https://cyclonedx.org/capabilities/saasbom/
https://csrc.nist.gov/projects/Software-Identification-SWID
https://www.iso.org/cms/%20render/live/en/sites/isoorg/contents/data/standard/06/56/65666.html

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 7

It provides descriptive information about a specific release of a software product or component but

currently does not provide a dependency graph24. SWID tags may be incorporated into both SPDX

and CyloneDX SBOM documents to allow an easy transition between formats.

Care should be taken to ensure SBOMs are provided in a format that can be processed by their

consumers without the loss of integrity and that the generated SBOM meets the minimum element

requirements documented in the 2021 National Telecommunications and Information

Administration (NTIA) “The Minimum Elements For a Software Bill of Materials (SBOM).25

While translation tools are available to convert between formats, digitally signed component

documents that are transformed outside the boundaries of the supplier may lose the proof of

authenticity provided by the originating author. For information on how licensing and export

control information is created and shared, refer to section 5.1.4 “License and Export Control.”

3 Creating and Maintaining a Company Internal Secure Open-Source

Repository

An internal repository can help automate key processes around OSS usage, including security

testing, policy enforcement, integrity verification, and auditing. This section describes the process

used to create and maintain open-source software that has been approved for use within a

company. It describes the mechanisms used to create an internal secure repository which is made

available to multiple product development groups/organizations and how this repository and the

third-party components are shared, maintained and continually checked for vulnerabilities (see

Figure 1).

24 See David Waltermire et al., Guidelines for the Creation of Interoperable Software Identification (SWID) Tags
(2016) (NIST Internal Report 8060), http://dx.doi.org/10.6028/NIST.IR.8060

25 NTIA The Minimum Elements For a Software Bill of Materials (SBOM)
https://www.ntia.doc.gov/sites/default/files/publications/sbom_minimum_elements_report_0.pdf;
https://www.ntia.doc.gov/report/2021/minimum-elements-software-bill-materials-sbom

http://dx.doi.org/10.6028/NIST.IR.8060
https://www.ntia.doc.gov/sites/default/files/publications/sbom_minimum_elements_report_0.pdf
https://www.ntia.doc.gov/sites/default/files/publications/sbom_minimum_elements_report_0.pdf
https://www.ntia.doc.gov/report/2021/minimum-elements-software-bill-materials-sbom

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 8

Figure 1: Maintaining Secure Open-Source Repository

Organizations may need to select, acquire, and deploy package repository software or services to

host their internal secure open-source package repository such as GitHub Packages, jFrog

Artifactory and Sonatype Nexus Repository. They may already have one if they are building and

publishing packages internally, and if so, they should evaluate whether this existing software or

service can also meet their needs for open-source software. The main factors in selecting a package

repository may be support for the types of open-source packages used by the organization (such as

Maven, Node Package Manager (npm), or Docker images), as well as specific features desired by the

organization (such as integration with the organization’s Identity and Access Management (IAM)

systems).

When implementing a package repository solution for an organization to use in open-source

management, it is critical to properly define and enforce the processes for adding packages and

consuming them. For organizations with extensive open-source use, these processes can have a

significant impact on agility and developer satisfaction. Choosing the appropriate level of

assessment for each stage of development and automating these processes can minimize this

impact.

To ensure that developers can confidently consume open-source from the package repositories,

appropriate controls should be put in place so packages cannot be added outside of the approved

processes. These controls may include access control restrictions or policies that prevent the

consumption of packages that don’t meet certain criteria. To balance developer agility with risk,

organizations may use multiple package repositories with differing policies. For example, one that

can be used from developer local workstations and continuous integration (CI) systems (with less

restrictions), and another used for more restrictive build systems used for product released (with

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 9

more restrictions). These mitigations are aligned with emerging industry frameworks such as the

Secure Supply Chain Consumption Framework (S2C2F)26. The S2C2F provides high-level practices

and detailed requirements to improve how developers securely consume open-source components

and organizes them into a maturity model to enable development teams and organizations to

prioritize effectively (see Appendix B: Secure Supply Chain Consumption Framework (S2C2F)).

3.1 Open-Source Software Adoption Process

There are various levels of maturity of an Open-Source Software management process. For smaller

organizations, the process may involve the management of a single repository where adopted third-

party software is integrated after passing all risk and vulnerability assessment that may be

performed manually or with tool support. The first step in the open-source adoption process (see

sections 2.2 and 2.3 of the Securing the Software Supply Chain for Developers27) is the identification

by the developer for the need of a specific open-source component based on product and design

requirements. The adoption takes into consideration the quality of the open-source component, its

adoption by others, license type, vulnerability history and the benefits of the adoption as related to

time and development cost. The developer determines the delivery format of the component based

on formats available, binary or source and the ability to incorporate the OSS available into the

secure build environment. Source is preferred for better integration into the secure build practices

of the product into which it is being adopted. The developer performs the initial vulnerability

assessment by first running any security analysis tools that are available prior to download, such as

Software Composition Analysis (SCA), virus scans and fuzz testing. Developers then download the

component to an isolated secure environment where additional composition and security analysis

is performed (refer to section 3.2 and section 5.2.1 on how to perform this analysis). Based on the

size and structure of the organization, the results of the OSS vulnerability scan are provided to the

suppliers and developers for further review if these groups don’t already have access to the results.

A Vulnerability Exploitability eXchange (VEX)28 document associated with the software may also be

an important input into the decision process. During this process, the developer also evaluates the

component under consideration to ensure it provides the desired features while maintaining

security and weighs the cost of integration. Once the initial evaluation is performed and the decision

is made to move forward with the adoption process, larger organizations may require a formal

request be generated to the development management team to complete the approval process.

For both large and small organizations, once approved, an ingestion process allows the developer to

upload all required materials to a secure, protected environment, with the component being stored

in an intermediate secured repository. The documents collected outline the requirements met by

the component adopted, as well as artifacts that may have been obtained that describe associated

information on security analysis results, risk, licensing, and export considerations.

26 https://github.com/ossf/s2c2f
27 https://media.defense.gov/2022/Sep/01/2003068942/-1/-

1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
28 VEX is a type of assertion allowing a supplier or other party to claim that a vulnerability does not affect a piece of

software, and that the user or downstream developer does not have to take any action. It is up to the developer
in this instance to determine whether to trust the VEX statement.

https://github.com/ossf/s2c2f
https://media.defense.gov/2022/Sep/01/2003068942/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
https://media.defense.gov/2022/Sep/01/2003068942/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 10

In large organizations, an Open-Source Review Board (OSRB) reviews all adoption requests using a

team consisting of representatives from development, management, security and quality assurance

teams. The team performs a security assessment identifying any known Common Vulnerabilities

and Exposures (CVE) associated with the component and augments the security scanning

previously performed by the developer using tools not easily available to developers due to cost or

other reasons. The team also evaluates the licensing and export requirements of the component

and identifies any tasks that may be required to meet those defined policies and procedures. The

evaluation considers the history of the component, as it relates to any previous version, noting how

the project is currently maintained and has been maintained over time. Third party analyses of the

component or project, such as Open-Source Security Foundation (OpenSSF) scorecard29 can be

considered as a part of the evaluation process, requiring the developer to verify the results and

assess risk. (Refer to “Quickly Assess Open-Source Projects for Risky Practices.”)

The review process can be iterative where the OSRB team may need additional information from

the developer and both the request for information and response are captured and provided as

artifacts used in the final decision. Once all information is collected, the OSRB team performs risk

assessment and determines an outcome for the request. The decision considers the security

scanning results and may outline any exceptions that have been granted to the component, such as

a known vulnerability in the component which may not be affected in the adopted product. Smaller

organizations should perform a subset of the OSRB activities based on need and organization

structure.

Once adopted, the component is integrated into a protected, read-only repository that is

continuously scanned and monitored for vulnerabilities, with incidents reported directly to the

developer groups that have adopted the component for use (see section 3.2 “Vulnerability and Risk

Assessment”).

In mature development environments, once a third-party component is adopted, it is integrated

into the build process of the product, and the source or binary is pulled from the centralized, secure

repository, allowing multiple products the ability to use the same vetted component for all builds.

The build process may be enhanced to ensure the component is accounted for in automated

vulnerability scanning using a more sophisticated set of tools not available within the day-to-day

developer environment and also when generating a final SBOM.

Suppliers oversee the OSRB process and define the risk management process that includes the

procedure for third-party software adoption, artifacts required for collection, the types of tools,

output and formats required for SCA validation, vulnerability scanning and SBOM creation.

Suppliers also define the tracking, vulnerability assessment and reporting mechanism required for

both internal developers and external customers.

Suppliers collect and escrow artifacts and make selected artifacts available to customers, based on

legal and security sensitive considerations. When possible, documents and artifacts related to the

build process are rolled up into an SBOM describing the product and third-party components that

reside within it. An SBOM generally will meet many of the requirements needed by customers of the

product for risk assessment, validation and inventory. Suppliers and developers may maintain a list

of third-party providers based on the evaluation process identified above and used as part of their

adoption strategy. An exception process may be used to identify the third-party components which

29 https://securityscorecards.dev/

https://securityscorecards.dev/

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 11

may contain an associated risk based on security, licensing, exporting or source modification

concerns. Suppliers and developers work together to manage the response to customer requests for

the identification of third-party vulnerabilities within a product. Once the vulnerability has been

resolved, suppliers and developers manage the availability of any updated components to the

customer using a multitude of delivery mechanisms such as automatic live update, using a patch

process or by providing a complete product update. The update mechanism must provide flexibility

to allow customers the ability to work around the constraints of their specific deployed

environments and internal update process when deploying a vulnerability resolution. They may do

so using a process which may be facilitated by creating a VEX30 report which the customer can

ingest and use for tracking. A VEX document is a machine-readable security advisory in a format

like the Common Security Advisory Framework (CSAF), with the notable feature that it can

communicate that a vulnerability does not affect a product.

NOTE: The adoption and production of VEX is an emerging framework and ecosystem as of

the publication of this document. Developers and Suppliers of software should be aware that

the production and maintenance of VEX documents31 are still under development and need to

monitor the CISA resource website for the latest information on VEX.

A better level of maturity automates the ingestion process used for the assessment and generation

of artifacts used in the review for adoption. Once adopted, the component is stored in a secure

repository where both vulnerability scanning and monitoring is regularly performed using a mix of

both manual and automatic means. Procedures for best practices within development

environments support automation and artifact generation to attest to the secure development of

the final product. This attestation includes third-party adoption, the building, scanning, and

packaging within the product. Once delivered to the customer, maintenance and response to

vulnerabilities are managed and addressed. For more information on this process and the

acceptance criteria for secure software development, refer to “Securing the Software Supply Chain:

Recommended Practices Guide For Developers”32 section 2.1, “Secure Product Criteria and

Management,” section 2.2, "Develop Secure Code," and section 2.3 "Verify Third-Party Components."

3.2 Vulnerability and Risk Assessment

This section describes the vulnerability and risk assessments that may be applied when considering

open-source software before and after adoption. The process should include identification,

provenance, and proposed use.

Note: The guidance for assessing risk of open-source components should be scaled based on the

size of the development organization. At a minimum, developers need to perform a security

assessment of software using a measurable technique that suites their environment. There are tools

available to aid in this process, such as Security Scorecards, available from OpenSSF33. This is an

30 https://www.cisa.gov/resources-tools/resources/minimum-requirements-vulnerability-exploitability-
exchange-vex

31 https://www.cisa.gov/sites/default/files/publications/VEX_Use_Cases_Aprill2022.pdf ;
https://www.cisa.gov/sites/default/files/publications/VEX_Status_Justification_Jun22.pdf

32 https://media.defense.gov/2022/Sep/01/2003068942/-1/-
1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF

33 https://github.com/ossf/scorecard

https://www.cisa.gov/resources-tools/resources/minimum-requirements-vulnerability-exploitability-exchange-vex
https://www.cisa.gov/resources-tools/resources/minimum-requirements-vulnerability-exploitability-exchange-vex
https://www.cisa.gov/sites/default/files/publications/VEX_Use_Cases_Aprill2022.pdf
https://www.cisa.gov/sites/default/files/publications/VEX_Status_Justification_Jun22.pdf
https://media.defense.gov/2022/Sep/01/2003068942/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
https://media.defense.gov/2022/Sep/01/2003068942/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
https://github.com/ossf/scorecard

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 12

automated system which analyzes thousands of open-source projects for conformance to a number

of security practices. Open-source components which are chosen despite having a poor score

should be scrutinized more carefully. In some cases, developers might consider alternatives to

components with a poor score. As security issues are discovered and the adopted open-source

projects are updated, developers should be vigorous in their efforts to adopt versions with security

bugs fixed.

The first step in vulnerability and risk assessment is for developers to create an inventory of third-

party open-source components (see section 3.1 “Open-Source Software Adoption Process”). Once an

inventory is available, developers collect the versions of those components and verify they are up to

date or, at least, have no known vulnerabilities that affect the component. Developers and/or

suppliers identify any vulnerabilities within each component by initially and periodically checking

for known CVEs and vulnerabilities using resources such as the National Vulnerability Database

(NVD) or other community health facilities. Also addressed are third-party integration concerns

such as built-in extensions for plug-ins required in the development of the component and the code

interfaces used. Components are ranked based on relevant factors, such as the popularity and

utility of the component, both internally and externally. Components can also be prioritized based

on risk, security sensitivity, the use of encryption and community health. Maturity of the

community, number of contributors, frequency of patching and the presence of an SBOM should

also be considered. Code size and complexity are also a major factors. The language used to develop

the software should be considered, for example selecting memory safe languages34. Libraries and

components written in memory safe languages may reduce the risk of vulnerabilities present for

classes of vulnerabilities such as buffer-overflows and memory corruption exploits. Depending on

the overall assessment results from the considerations above, additional actions may be required,

such as a manual review of some components, or the in-depth review of the results from automated

scanners which report multiple levels of detections.

For each critical component, developers and/or suppliers apply security and threat modeling to

identify any vulnerabilities and weakness in these components and their 3rd party dependencies.

This process should be ongoing based on the risk assessment as discussed in section 4.1

“Maintaining Open-Source Software.” A manual full end-to-end review can also be used. This process

may isolate run time dependencies, within the parameters of how the component is used, for each

third-party component and uses SCAs to identify all key aspects of the component. Each critical

component is checked initially and periodically for community health and weaknesses.

Components with known vulnerabilities can check whether the vulnerable portion may be

used/called or enabled within the application. If it is, then check for any compensating controls.

Based on risk, additional vulnerability assessment may be applied by performing code reviews,

additional static code analysis, dynamic code analysis and additional security analysis using in-

house red teams, bug bounties or other third-party vulnerability detection resources. For more

resources to support third-party vulnerability detection, refer to section 5.1.3 “Software

Composition Analysis and the VEX Format.”

All newly discovered vulnerabilities in the third-party component should be reported to all affected

and tracked using the company bug tracking mechanism, as well as the third-party reporting

34 https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF

https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 13

system, such as OSVs35 and/or CVEs should be registered. Developers should work with the

maintainers or internal stakeholders to prioritize vulnerabilities based on risk and schedule the

availability of patches based on this assessment. For unpatched components, they identify the risk

based on compensating controls and context of deployment. The risk ranking of the third-party

component can be based on the NIST Common Vulnerability Scoring System (CVSS) or other

frameworks such as CISA’s Known Exploited Vulnerabilities catalog (KEV), Stakeholder-Specific

Vulnerability Categorization (SSVC)36, Exploit Prediction Scoring System (EPSS), Mend's open

source database37, OSV, and NIST’s NVD, which are used to communicate the characteristics and

severity of software vulnerabilities based on an associated risk score. For risk beyond a certain

threshold, design an exceptions process with a defined timeline for replacing the component. The

details of a solution to vulnerabilities in a third-party component should be made available using a

VEX readable format for Supplier and Consumer consumption.

To augment your discovery process, perform ongoing monitoring and alerting of third-party

component vulnerabilities in house by rerunning the ingestion process scanning tools or by

deploying integrated re-occurring automated vulnerability scanning. Additional monitoring of

security center reports provided by both internal and external researchers should be leveraged, as

well as the use of threat intelligence bulletins from well-known entities, such as sponsored security

announcements38. Further insight can be gained from automated services that track changes in OSS

used within a product, providing notifications to the organization when updates to dependencies

are required. Pay-per service SCA scanners or other local or cloud-based application security tools

may also be leveraged where applicable. Vulnerabilities that are found should be tracked until

remediated, and results recorded.

4 Open-Source Software Maintenance, Support and Crisis Management

This section describes the process used to maintain, monitor and update open-source software that

has been approved for use within a company and incorporated into a product delivery. In this

section, we review the mechanisms used to receive vulnerability and threat reports associated with

third-party components, assess the risk of the reported vulnerability and define the type of

activities associated with a crisis management process to mitigate the threat. Using the acceptance

process described in section 3.2 “Vulnerability and Risk Assessment,” an assessment may be

conducted for any updated third-party component and then disseminate the availability of an

update when all acceptance criteria is met using a secure delivery mechanism.

4.1 Maintaining Open-Source Software

Once an open-source component is adopted following the process outlined in sections 3 and 3,1

above, the third-party source is stored in a secure repository, where a continuity plan is used to

define how vulnerabilities within OSS may be identified and addresses how inventory management

is performed. If an SBOM has been previously created for the component, it may be used to

35 https://osv.dev/
36 https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=653459
37 https://www.mend.io/vulnerability-database/
38 https://www.cisa.gov/news-events/bulletins

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=653459
https://www.mend.io/vulnerability-database/

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 14

automate the inventory process and scanned when vulnerabilities are reported. All third-party

sources are monitored for defects and linked to ongoing vulnerability assessments in both the

supplier and developer roles. Ongoing alerting and monitoring can occur in house by running the

vulnerability scanning activity used within the ingestion process, or can be provided by external

sources, such as reports from a security center, researcher, threat intelligence operations which

look for Zero Day exploits, CISA automated notifications, security bulletins, CVE database

monitoring, red teaming activities or by direct notifications from third-party source providers.

Maintainers can also leverage resources such as automated notifications services and local or

cloud-based scanning technologies that are described in section 3.2, “Vulnerability and Risk

Assessment”.

When vulnerable third-party software is identified, each product is assessed both manually and

using an automated processes to determine what components are affected. A risk assessment for

each affected product is determined using the considerations defined in section 3.2 “Vulnerability

and Risk Assessment.” The risk assessment takes into account the prevalence of the open-source

component and its use within the product. Once identified, vulnerable products are tracked for

remediation or exceptions granted. Remediation may take the form of a configuration change, a

source or binary change, or may require an update of a third-party component. In the case of older

sources that are no longer supported by the open-source provider, the fix may have to be

backported to older source, which is maintained in the build repository or escrow. If a product is no

longer being updated, strong consideration should be made to finding an alternative open-source

solution.

Vulnerable products are tracked for remediation and an action plan created, identifying the actions

to take and a planned timeframe for the delivery of a solution.

The plan also identifies the delivery mechanism that may be used, to include a patch, update or

security bulletin, notice or advisory that can include configuration changes required, or a manual

remediation step to mitigate the vulnerability. In some cases, the solution may require disabling a

service, function or feature by modifying a configuration setting. The solution may also require a

third-party repository update, which should use the procedures defined in the adoption process

outlined above. Any fixes to the third-party component are tested and the repository is updated. All

development groups that use the affected third-party component are notified through the

monitoring roles listed above and all associated products are updated. Changes made to third-party

components may be reflected in an updated SBOM and any associated remediation can be included

in a VEX. These changes may be incorporated automatically at the completion of a product rebuild

or referenced using an intermediate SBOM to the product component being updated. The updates

to the vulnerable product are made available.

The fix is made available to the customer using a number of delivery mechanisms such as an

automated update process, or a link to a download which can be applied at the customer’s

convenience. Updates can be provided using OS specific update package tools for example “apt,”

“yum” or a product update facility. A software update management facility can be used that allows

packaging, inventory and update management functions to be performed automatically, and the

update can be rolled out based on time, day, and other organization-based restrictions. Finally,

updates can be provided by an on premis service engineer.

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 15

4.2 Crisis Management

The reader should familiarize themselves with NIST Special Publication (SP) 800-61, Rev 239, the

Computer Security Incident Handling Guide. We may not supersede the NIST body of work. Rather,

we may offer operational suggestions for a well-managed vulnerability response system that ties

into the delivery of SBOMs and VEX components. The result of this process is a clear and timely

response to customers regarding the status of a software issue. The creation and delivery of SBOM

and VEX information should become an integrated step in the overall software development

lifecycle.

A Crisis Management Plan defines the following:

 The nature and types of crises managed under this plan versus those managed by other

functions.

 The structures that enable cross-functional information sharing, decision making, and

communication.

 The individuals and teams involved in crisis response.

 The roles and responsibilities of the various teams that might be engaged in the crisis

response:

o What defines a crisis.

o Crisis Response Concept of Operations.

o Crisis Response Structure.

o Definition of Product.

o Definition of Software as a Service.

 Crisis Definition

A crisis is defined as a situation that might or does compromise your company’s reputation,

products, goals, business value, ability to operate, or that of your customers. All events, even those

localized to individual products or teams are expected to follow this plan, and to keep the Crisis

Management Team (CMT) informed throughout the crisis to ensure timely response coordination,

as required.

 Crisis Response Concept of Operations

A highly functional team may rely on a tiered, cross-functional team structure to achieve strategic,

crisis response efforts which includes a CMT and a Product Response Team (PRT).

At the onset of a crisis, the CMT may designate an incident manager who will own the crisis

response. The CMT incident manager then partners with and coordinates the individual response

activities of one or more PRTs to ensure a unified approach. The focus of the CMT is to facilitate

effective communication, decision-making, response actions, and status between teams and, as

needed with external teams. The secondary focus of the CMT is to provide visibility to outside

39 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r2.pdf

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 16

parties into progress toward resolution. The thought process used when evaluating a vulnerability

response is outlined below. The incident manager will ensure full participation of each PRT.

When a vulnerability is identified or announced, a senior technician should study the

announcement and gather an initial understanding of the issue. The output of this step is a concise

statement explaining the vulnerability and potential remediation techniques. This information is

key to ensuring a consistent means of remediation across the entire enterprise, thus minimizing the

chances of an incorrect resolution. A severity level should be assigned. This may dictate the timeline

to remediation with high/severe threats requiring immediate attention.

Figure 2: Vulnerability Response Process and Phases40

4.2.2.1 Inventory Role in Crisis Response

Having a complete understanding of the inventory of products that your organization develops is

the foundation of a quality crisis response capability.

There are important steps to perform before an organization can properly respond to a crisis. A

ledger of each distinct product should be maintained, regardless of the delivery mechanism for each

product (e.g., on-premise versus Software as a Service (SaaS)). Each product in this inventory list

should have a current owner and security champion. This inventory list cannot be a “one-and-done”

list, it should be updated and verified routinely as employees may transfer or leave an organization

overseen by the CMT. It is also suggested that the CMT have some type of notification from Human

Resources for employees that terminate from the organization. Additionally, an email distribution

list should be established to ease the communication with PRTs.

40https://www.cisa.gov/sites/default/files/publications/Federal_Government_Cybersecurity_Incident_and_Vulner
ability_Response_Playbooks_508C.pdf

https://www.cisa.gov/sites/default/files/publications/Federal_Government_Cybersecurity_Incident_and_Vulnerability_Response_Playbooks_508C.pdf
https://www.cisa.gov/sites/default/files/publications/Federal_Government_Cybersecurity_Incident_and_Vulnerability_Response_Playbooks_508C.pdf

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 17

The inventory list should be current to properly facilitate efficient crisis issue research and

customer communications for every product an organization develops.

Lastly, product teams should notify the CMT when a product reaches End of Support so the

inventory list can remain free of errors.

4.2.2.2 Crisis Management Team Roles and Responsibilities

The job of a crisis team is to mobilize the workforce to assess and communicate on the status of a

vulnerability succinctly, accurately and in a timely manner. The size of your organization, and the

number of customers may dictate the sophistication of the communication. The crisis team should

stay current with emerging standards for reporting and identifying the status of issues. Emerging

standards like VEX are designed to facilitate digital communication with customers regarding the

status of a products relationship with a vulnerability announcement. The goal of VEX is to facilitate

a customer “self-service” discovery of the status of a product of interest as it relates to a

vulnerability of interest.

4.2.2.3 The Crisis Management Team Process

4.2.2.3.1 Mobilize

Each product team within an enterprise should be notified and acknowledge the call to action

within a specified timeframe. Each product team should update the control sheet with a status of

“Under Investigation” when they begin researching the issue. This communication allows the CMT

to track participation across the enterprise. The time requirement for this acknowledgement may

be dictated by the severity of the issue. As research proceeds, all teams update the control list as

their research is completed. The responses may vary per enterprise but should be consistent and

could be similar to the following:

 Under Investigation

 Not Affected/Not applicable

 Not within execution path

 Affected, in engineering

 Work around available

 Corrected and available version number and optional build version

The result of this step may provide the CMT a clear means of keeping customers appraised in a

transparent manner. Communication should consider moving toward VEX as that standard

matures.

4.2.2.3.2 Resolve

If a programmatic modification is required to fix a vulnerability, care should be taken to re-deliver

the product with only the required modification. Each supported repository tree should be re-built

with only the required change that fixes the vulnerability, and all supported versions should be

built and offered separately. Organizations should refrain from delivering the fix in an existing

unreleased tree, or with components that are not already known to each customer. The patch
should follow the normal development cycle in place within an organization. A label should be

created designating the source tree as addressing the vulnerability. An SBOM should be generated

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 18

and stored within the source tree for delivery to the customer with a patch. A VEX should also be

generated and stored with the matching SBOM.

If the determination was that the software was NOT affected, the resolution is to update the VEX

and store it with the current production location within each supported source tree. There is a

possibility that a vulnerability can affect a customer environment adversely while the issue is under

investigation. There is also a possibility that a product cannot resolve an issue at all. In either case a

VEX should state affected, and a mitigation technique should be disclosed if one exists.

 On-Premise Versus SaaS

Much of what was discussed above deals with the complexities of on-premise software. SaaS

offerings should still have this type of maturity, but the number of supported software versions are

likely to be considerably fewer in number. That said, there are likely to be weekly or bi-weekly

releases of SaaS offerings, with roll-back versions available should there be major issues with new

offerings. The same maturity is needed to ensure proper communication to customers.

4.3 Code Signing and Secure Software Delivery

Suppliers should perform code signing for all software and firmware in components that are

delivered to external entities including customers and partners. Any gap in code signing processes,

or in the security of the keys used in code signing operations, increases the risk of customer

exposure to damage from malicious or counterfeit components, which could harm the Supplier

entity’s brand, reputation, liability, and future business. The purpose of this section is to define

secure code signing requirements for suppliers to ensure that code signing operations and keys are

secured with appropriate safeguards.

The scope of this section is inclusive of all Suppliers that provide software and firmware code for

any components that are delivered to external entities. So, the suppliers in scope include Original

Device Manufacturers (ODMs), Original Equipment Manufacturers (OEMs), Value-Added Resellers

(VARs), Software Solution Providers, Contract Software Development Organizations, and Cloud

Service Providers (CSPs).

 Secure Code Signing Requirements

This section presents requirements for secure code signing. The requirements are organized into

three activity-based security categories as follows:

 Perform Code Signing

 Use Proven Cryptography

 Secure Code Signing Infrastructure

4.3.1.1 Perform Code Signing

Supplier organizations should sign all artifacts that can be signed41 and provided to external

entities. Supplier organizations should also ensure availability of a mechanism to verify those

signatures before installing or applying those components. This requirement applies to both initial

41 This only applies to artifacts whose signature will still in a form that may be verified by the recipient of the
artifact.

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 19

installation and upgrade processes. The signature validation mechanism should be documented in a

security configuration guide.

For some products, the signing and/or signature validation42 is performed by third-party

components or platforms. If a third-party signature validation mechanism43 is not available, a

Supplier should provide a signature validation mechanism with any supplier proprietary code44.

Any implemented proprietary signature validation mechanism, other than the one provided by a

third-party component or platform, should be developed in accordance with Secure Development

Lifecycle best practices45 and stored/accessed in a trusted execution environment to mitigate the

risk of tampering or sabotage of proprietary signature verification mechanisms.

4.3.1.2 Use Approved Cryptography

Code signing should always use a NIST approved46 digital signature algorithm (a type of public-key

cryptography, which is also known as asymmetric-key cryptography). The latest NIST guidance for

code signing provides explanations of processes, techniques, and best practices. The more detailed

specification for digital signatures is Federal Information Processing Standards (FIPS) 186-547,

which approves versions of the Rivest Shamir Adleman (RSA) and Elliptic Curve Digital Signature

Algorithm (ECDSA) signature algorithms.

Public keys used for code signing should be certified by an approved trust anchor or trust path. The

certificates and keys used to sign any code that is delivered to external entities should be issued

from a commercial Certificate Authority (CA) entity to enable seamless operating system support

for verification of the Public Key Infrastructure (PKI) chain-of-trust and trust anchors. Code signing

certificates and keys issued by a public CA should have a one-year lifetime and be renewed

annually. Timestamps should be applied to preserve signature validity beyond the certificate

expiration date. Self-signed certificates and keys with an extended lifetime may be used in closed or

proprietary systems or if otherwise dictated by technical requirements or functional specifications.

A future concern for most cryptographic processes, including code signing is the advent of quantum

computing. Quantum computers can perform some computations exponentially faster than classical

computers, which may put some digital signatures created with the current standard algorithms at

significant risk in the future. To address this risk, new Post Quantum Cryptography (PQC)

algorithms are being established via NIST’s Post-Quantum Standardization Project48 and NIST’s

Recommendation for Stateful Hash-Based Signature Schemes49. Migration to PQC may impact code

signing operations, so suppliers should proactively establish a roadmap for adoption of PQC within

42 https://www.nist.gov/publications/protecting-software-integrity-through-code-signing
43 https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-89.pdf
44 https://csrc.nist.gov/CSRC/media/Publications/white-paper/2018/01/26/security-considerations-for-code-

signing/final/documents/security-considerations-for-code-signing.pdf
45 https://csrc.nist.gov/publications/detail/sp/800-218/final
46 The use of non-approved cryptographic techniques, including proprietary ones, which have not been reviewed

and approved by NIST is extremely risky and unlikely to meet regulatory or interoperability requirements.
47 https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
48 https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04282021.pdf
49 https://csrc.nist.gov/publications/detail/sp/800-208/final

https://www.nist.gov/publications/protecting-software-integrity-through-code-signing
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-89.pdf
https://csrc.nist.gov/CSRC/media/Publications/white-paper/2018/01/26/security-considerations-for-code-signing/final/documents/security-considerations-for-code-signing.pdf
https://csrc.nist.gov/CSRC/media/Publications/white-paper/2018/01/26/security-considerations-for-code-signing/final/documents/security-considerations-for-code-signing.pdf
https://csrc.nist.gov/publications/detail/sp/800-218/final
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04282021.pdf
https://csrc.nist.gov/publications/detail/sp/800-208/final

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 20

their code signing operations. The NIST Guidance document, Getting Ready for Post-Quantum

Cryptography: Exploring Challenges Associated with Adopting and Using Post-Quantum

Cryptographic Algorithms50 is a useful reference which organizations may choose to leverage to

guide this adaptation effort.

4.3.1.3 Secure Code Signing Infrastructure

The origin, authenticity, and integrity of production code signing key material should be verified

and maintained to ensure that code signing keys come from a trusted source and are provisioned

into a securely managed cryptographic infrastructure to support secure code signing operations.

The private keys used to perform code signing operations should be secured, for example, by using

a Hardware Security Module (HSM)51. An alternative approach for signing OCI artifacts is Sigstore,

which provides key management based on single-use keys and public transparency logs. Sigstore

can overcome some of the complexity and risks of traditional key management.

 Secure Software Update Delivery

On-premises software has historically been delivered to customers in one of three methods:

 Removable media

 Digital download from an originator hosted service

 Digital download from a third-party distributor

Regardless of the delivery method, an SBOM should accompany the software, the details for

generation described in Section 5.1.2. Furthermore, the SBOM should over time become available

for inspection prior to, and separate from, the installation procedure for the software. Additionally,

the SBOM should be signed in a manner that shows its provenance and ties it to the software

package delivered.

Before shipping the software package to customers, the developer or supplier should perform

binary composition analysis to verify the contents of the package and reproducible build validation

when possible. This process is described in “Securing the Software Supply Chain, Recommended

Practices Guide for Developers,” Section 2.5.1 “Final Package Validation” and Section 5.1.3

“Software Composition Analysis (SCA) and VEX Format” of this document. Binary SCA tools can

determine what is included in the final deliverables and identify potential issues in the final

packages including a range of activities from the detection of potential vulnerabilities and threats to

including Software Of Unknown Provenance (SOUP) and secrets inadvertently included in the final

packages. This process describes one of many ways of producing an SBOM containing the true

contents of the final package being delivered, allowing customers a means to evaluate the package.

For more information on the discovery, access and transporting of SBOMs refer to Software Bill of

Materials (SBOM) Sharing Lifecycle Report.”

50 https://csrc.nist.gov/publications/detail/white-paper/2021/04/28/getting-ready-for-post-quantum-
cryptography/final

51 https://csrc.nist.gov/publications/detail/fips/140/3/final

https://csrc.nist.gov/publications/detail/white-paper/2021/04/28/getting-ready-for-post-quantum-cryptography/final
https://csrc.nist.gov/publications/detail/white-paper/2021/04/28/getting-ready-for-post-quantum-cryptography/final
https://csrc.nist.gov/publications/detail/fips/140/3/final

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 21

For organizations hosting a delivery service, those systems and required resources should be “right

sized” to service a flood of downloads resulting from incidents like log4j. The infrastructure for

these systems should also be designed with DDoS protections in place.

An automated pull model seems to work best for client software. Each client notifies the back end of

the product, version and build that it is running. If a new version is available, the software is

downloaded and either installed, or made ready installation. This communication should be

controlled via client and server certified mutual authentication. The client needs to be assured that

the communication was made with the authorized server. In some environments, the server also

may need to ensure the conversation is with a known client. There are several examples of man-in-

the-middle attacks that take advantage of infrastructure with insufficient security.

When automatic updates are applied to a software product, a new SBOM is required to reflect the

changes within the product. This new SBOM can be delivered automatically through a notification

process or provided to the customer using an agreed upon pre-established communication channel.

Updates are usually tested in a non-production environment before being rolled out during a

“maintenance window.” The software may undergo further testing on the customers’ network for

more mission-critical software, including operational technology systems. This requires other

efforts to manage which versions are where. The customer software acceptance procedures should

modify the SBOM inventory repository when new software gets installed in the production

environment. If a version of a product exits the production environment, the repository needs to

reflect that fact.

Quite often, software is delivered with content other than binary executable code, such as

configuration files and data sources used in the normal operation of the system. The rampant

adoption of machine learning capabilities is a modern driving force in content delivery. The

software and the associated content should be signed and verified by the supplier delivered agent

on the endpoint or server. Updated content within a product, such as configuration files, databases

or other data resources required for the product operational environment should be reflected in an

updated SBOM.

While not related to software supply chain security, an organization should provide an update

paradigm that allows the consumer organization to control their own update schedule. The process

should be able to download new versions of software once, then have the updates disseminate to

the internal customer network as controlled by customer policy.

5 Software Bill of Materials Creation, Validation, and Artifacts

This section provides a synopsis of the SBOM creation process and its relation to the OSRB activities

covered in this document. It details information, tools, processes used, and considerations required

for creating an SBOM. Also included are the means to update and distribute secure SBOMs due to

software updates and changes, which may result from responding to vulnerabilities in third-party

components. SBOMs use information produced during the acquisition and review of open-source

components and can be used as part of vulnerability management. This section may reference

relevant sections elsewhere in this document for additional detail.

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 22

5.1 Software Bill of Materials Background

The EO 14028, Improving the Nation’s Cybersecurity, 12 May 2021, directed guidance in support of

software security52. Government and industry are collaboratively writing this guidance as a result

of the EO. Highlights from the EO state that organizations may be requested to provide a SBOM

directly to the purchaser or publish it on a public website and that both government and non-

government parties may be required to review the SBOM to ensure that software products comply

with the minimum elements for an SBOM. The EO also directed the Department of Commerce and

NTIA to publish The Minimum Elements For a Software Bill of Materials (SBOM) which outlines

activities and data required for an SBOM as well as example formats that fulfill SBOM

requirements53. SPDX54 and CycloneDX55 are the two most widely used machine-readable SBOM

formats.

As one of the deliverables arising from the EO, the National Institute of Standards and Technology

(NIST) produced guidance56 on the role of SBOMs within the broader Software Lifecycle. An SBOM

is a formal record containing the details and supply chain relationships of various components used

in building software. The goals of SBOMs are to increase software transparency and document

provenance. In the context of vulnerability management, the transparency facilitated by SBOMs

supports the identification and remediation of vulnerabilities. The existence of an SBOM may be

indicative of a developer or suppliers’ application of secure software development practices across

the Software Development Life Cycle (SDLC). Figure 3 illustrates an example of how an SBOM may

be assembled across the SDLC.

52 Presidential Executive Order (10428) on Improving the Nation’s Cybersecurity,
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-
improving-the-nations-cybersecurity/

53 https://www.ntia.gov/report/2021/minimum-elements-software-bill-materials-sbom
54 SPDX, https://spdx.dev/ (last visited May 18, 2021).
55 CycloneDX, https://cyclonedx.org/ (last visited May 18, 2021).
56 https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity/software-security-supply-

chains-guidance

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.ntia.gov/report/2021/minimum-elements-software-bill-materials-sbom
https://spdx.dev/
https://cyclonedx.org/
https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity/software-security-supply-chains-guidance
https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity/software-security-supply-chains-guidance

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 23

Figure 3: Software Life Cycle and Bill of Materials Assembly Line57

This guidance also maps SBOM-related capabilities to three maturity levels, Foundational,

Sustaining, and Enhancing. The activities for these capabilities are mapped to processes within this

document as follows:

 Ensure that SBOMs conform to industry standard formats to enable the automated ingestion

and monitoring of versions. Acceptable standard formats currently include SPDX and

CycloneDX.

o Reference: 2.4 SBOM Overview

 Suppliers should provide SBOMs that meet the NTIA’s Recommended Minimum Elements,

including a catalog of the supplier’s integrated open-source software and commercial

components that are detectable via scans58.

o Reference:

 5.2 Supplier Activities

 5.1.2 SBOM Generation Tools and Training

 Appendix B: Secure Supply Chain Consumption Framework (S2C2F)

 Map SBOM data with other data sources about risk, such as vulnerability data, supply chain

information and additional data elements that inform the risk posture of the acquiring entity.

Additional data elements include plug-ins, hardware components, organizational controls, and

other community-provided components.59

o Reference:

57 https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity/software-security-supply-
chains-software-1

58 https://ntia.gov/sites/default/files/publications/sbom_options_and_decision_points_20210427-1_0.pdf
59 https://www.nist.gov/system/files/documents/noindex/2021/06/08/GitLab%20-

%20NIST%20Position%20Paper%20%232.pdf

https://spdx.dev/
https://cyclonedx.org/
https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity/software-security-supply-chains-software-1
https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity/software-security-supply-chains-software-1
https://ntia.gov/sites/default/files/publications/sbom_options_and_decision_points_20210427-1_0.pdf
https://www.nist.gov/system/files/documents/noindex/2021/06/08/GitLab%20-%20NIST%20Position%20Paper%20%232.pdf
https://www.nist.gov/system/files/documents/noindex/2021/06/08/GitLab%20-%20NIST%20Position%20Paper%20%232.pdf

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 24

 3.1 Open-Source Software Adoption Process

 3.2 Vulnerability and Risk Assessment

 Maintain vendor vulnerability disclosure report at the SBOM component level.

o Reference:

 4.2 Crisis Management

 5.1.3 Software Composition Analysis and the VEX Format

Finally, the Office of Management and Budget (OMB) published Memorandum M-23-16 (Enhancing

the Security of the Software Supply Chain through Secure Software Development Practices)60,

which allows Federal Agencies to:

 Require SBOMs based on the criticality of software or other criteria determined by the

Agency.

 Require SBOMs to be in one of the formats defined in the NTIA Minimum Elements for

SBOMs or subsequent guidance from CISA.

 Retain SBOMs or be able to access them from a publicly posted location.

 Consider sharing of SBOMs with other Agencies.

As such, software suppliers, especially those selling software to the Federal Government, should

provide SBOMs for all components that are offered to customers. Should a supplier choose not to

offer SBOMs for certain components, that fact should be clearly communicated to all parties

creating and consuming the SBOM.

The ability to share SBOMs across organizational boundaries is crucial. Solutions such as the Digital

Bill of Materials (DBoM)61. managed by the Linux Foundation provide a digital common where

SBOM and other BOM information can be stored in defined taxonomies and accessed using defined

policies. An individual DBoM62 is the collection of records stored in the digital commons that are

associated with an individual artifact (a piece of software, hardware, device, virtual artifact).

More details on each of the SBOM formats listed by NIST, and the minimum elements required for

an SBOM are provided in section 2.4 “SBOM Overview.” Furthering this line of thought, the sections

below contain links to those formats’ as well as respective training and tools in the areas of SBOM

training, generation, license verification, conversion and validation.

https://spdx.dev/resources/tools

https://cyclonedx.org/tool-center/

Developers should complete a set of activities to ensure a full-spectrum coverage of SBOM which

include:

 Inventory Management (section 5.1.1) – Helps understand what libraries and

components are included in a software package. It also includes the types of scanning tools

60 https://www.whitehouse.gov/wp-content/uploads/2023/06/M-23-16-Update-to-M-22-18-Enhancing-
Software-Security.pdf

61 https://www.ntia.doc.gov/files/ntia/publications/ntia_sbom_framing_sharing_july9.pdf
62 https://dbom.io/ and https://dbom-project.readthedocs.io/en/2.0.0-alpha-1/

https://spdx.dev/resources/tools
https://cyclonedx.org/tool-center/
https://www.whitehouse.gov/wp-content/uploads/2023/06/M-23-16-Update-to-M-22-18-Enhancing-Software-Security.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/06/M-23-16-Update-to-M-22-18-Enhancing-Software-Security.pdf
https://www.ntia.doc.gov/files/ntia/publications/ntia_sbom_framing_sharing_july9.pdf
https://dbom.io/
https://dbom-project.readthedocs.io/en/2.0.0-alpha-1/

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 25

available for both developers and suppliers to support finding vulnerabilities and

maliciously hidden insertion of components during development and when building the

product (see section 4.3.2 “Secure Software Delivery”).

 Creating an SBOM (section 5.1.2) – Lists and helps track libraries and components in a

software deliverable.

 Analyzing OSS and Utilizing a VEX document (section 5.1.3) – Identifies known

vulnerable libraries or components and potential mitigations to libraries or components.

 License and Export Control (section 5.1.4) – Provides information to verify software

components for license incompatibilities which can cause liability and distribution issues

for projects using OSS.

 SBOM Validation (section 5.1.5) – Validates the created SBOM.

 Software Management and SBOMs

One of the most critical aspects of creating a comprehensive SBOM is software management.

Understanding how a product is built and what software components it is built from is essential to

producing accurate, complete, and up-to-date SBOMs. Software is complicated by the fact that a

component may, itself, contain other components. Each of the components in a product may depend

on specific versions of different components within the product.63Developers should collect all

these components, versions, and dependencies (internal and external) to produce a useful SBOM.

Many developers are familiar with the techniques (including SCA, static, runtime, and vulnerability

assessment scanners) used in the creation of an SBOM. SBOM creation tools can be incorporated at

product build time, in final packaging or after product deployment in a secure developer

environment. SBOM extraction tools can be broken down into four major categories, source, binary,

package, and runtime extractors. Each extraction type has both benefits and drawbacks with

respect to their availability, adoption, and performance. Also, many tools incorporate two or more

of the extraction techniques to enhance the fidelity of the SBOM results.

SBOM source scanners are used during the creation of the product to identify the

interdependencies between cooperating components. They provide the ability to construct

dependency trees to fully understand the relationship between a software component and each

library or other component of its dependent libraries. This information includes version

information, as well as any licensing, and cryptographic capabilities/dependencies that may be

provided within the source files. When used, configuration information such as file names and

default settings may also be made available. Since source compilation is architecture specific,

source extractors may not yield the precise dependencies for all delivered product architectures.

Also, source extractors do not reflect the runtime environment of the system the software is

deployed within, such as changes to dynamically linked libraries from system updates or other

product installations that may use the same libraries but different versions. Source scanners also

cannot identify differences in library implementations that may exist due to the use of multiple

paths for which differing versions of a library have been deployed within a system environment.

System path precedence may lead to variations in which dynamic library is being used.

63 A product may also have operational dependencies, such as run time libraries. These dependencies are generally
seen as beyond the scope of SBOMs. For example, the CycloneDX effort has defined an Operations Bill of
Materials (OBOM) to meet this need.

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 26

SBOM binary scanners are deployed on components or products after they have been built. In this

environment, much of the specific information about the components are available in the

executable header of each component, to include the versioning information, library dependencies

and architecture used. Binary scanners might not be able to obtain license, cryptographic and

export restrictions as readily as source and package scanners and suffer from the same deployment

fidelity as source scanners.

SBOM package scanners are used to extract information contained within an installable bundle of

software. These packages can come in the form of executables or well-known product bundles used

by system installation software or containers. Each package identifies the component information it

contains, and in many cases, the licensing, cryptographic and export control restrictions which may

apply to the component, or product. Dependencies of all components of the product, to include the

minimum versions acceptable, are generally included within the software package. However, the

actual version being used by the component cannot readily be derived unless specifically restricted

by the product, and updates to required components may happen automatically for many software

products so the deploy system may deviate from the initial SBOM. Package scanners can suffer from

the same deployment fidelity as source and binary scanners with respect to system environment

changes.

Runtime scanners can provide the best fidelity of a specific code path when being analyzed and

creating an SBOM. They run on a deployed system and can accurately detect all components and

track each dependency as it is currently deployed, with awareness to path precedence. They can

also record product default component configuration state after installation. Runtime scanners are

a more complex solution and not readily available for all environments.

Consideration on which extractor technique to use should be based on the environment the tool

may be used in. In some situations, one or more scanning techniques can be combined to ensure

that a comprehensive SBOM has been created. Then a separate tool can be used to validate the

newly created SBOM. Care should be taken to ensure false positives are not introduced within an

SBOM result due to the by-product of scanning tools that install additional packages, components

and libraries that are used solely for the creation of the SBOM and not included in the actual

product the SBOM describes.

Prior to signing an SBOM, the contents of an SBOM should be verified by either Quality Assurance or

as part of the development process to ensure malicious content has not been added. When possible,

reproducible builds can be used within a verification process to ensure the build environment has

not been compromised. Reproducible builds require the creation of two or more SBOMs, built from

segmented and secure independent build environments. The results of these builds are then

compared for consistency. For more information on reproducible builds, refer to “Securing the

Software Supply Chain: Recommended Practices Guide For Developers,” section 2.4, and “Harden the

Build Environment” as well as the Linux Foundation’s “Core Infrastructure Initiative”64 and

“Reproducible Builds.”65

64 https://www.coreinfrastructure.org/
65 https://reproducible-builds.org

https://www.coreinfrastructure.org/
https://reproducible-builds.org/

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 27

When open-source software (OSS) is being included in a product, and the OSS is accompanied by an

SBOM from the distributor of the OSS, that OSS SBOM should be validated before being bound to the

incorporating product and the product’s SBOM.

When creating an SBOM, consideration should be given on who is going to consume the SBOM and

what formats are acceptable. Many tools are capable of producing the common formats listed in

section 5.1.2 “SBOM Generation Tools and Training.” When needed, translation tools are available to

convert from one SBOM format to another, for example, SPDX to CycloneDX; this allows the correct

format to be delivered to the consumer.

Once created and validated, SBOMs are signed to provide integrity and attestation for the contents

of a product being delivered to a customer. In cases where translations are not performed by the

producer of the SBOM, the provenance of the SBOM may suffer due to the lack of signing by the

initial originator.

SBOMs and all associated artifacts created to attest to the validity of an SBOM are considered

sensitive documents and need to be treated as such and stored in a secure repository with

restricted access and version control.

An SBOM can be accompanied by additional vulnerability data, such as VEX, to provide additional

information on vulnerabilities found during vulnerability scanning of a product prior to release and

during the lifetime of the product. In many instances, these vulnerabilities are evaluated for the

associated risk to the operational requirements of the product and required to be addressed prior

to release. One means of identifying, addressing and tracking these concerns is by using a VEX,

which can describe the vulnerability and its status. See section 5.1.3 “Software Composition Analysis

(SCA) and the VEX Format” for more details on VEX and how it might be applied.

 Software Bill of Materials Generation Tools and Training

The information and tools listed below provide examples of the support available for the

automation of SBOMs and are used in the generation and validation of the two data formats that are

widely used for SBOM, SPDX and CycloneDX. To understand how this procedure maps into the

software life cycle, refer to Figure 3: “Software Life Cycle and Bill of Materials Assembly Line.” The

tool examples described support the verification of software components for license

incompatibilities, which can cause liability and distribution issues for projects using open-source

software (OSS). Note that the example tools themselves are OSS and so should be placed in

configuration management and tested as if they were internally developed code. Tools available for

SWID, a format used to define software products and components that may be included in SPDX and

CycloneDX SBOMS are also detailed below.

SPDX

o Tools - https://spdx.dev/use/tools/

o Information and Training

 OpenSSF SPDX Tutorial – https://github.com/david-a-wheeler/spdx-tutorial

 ISO/IEC 5962 SPDX – https://www.iso.org/standard/81870.html

https://github.com/david-a-wheeler/spdx-tutorial
https://www.iso.org/standard/81870.html

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 28

 NTIA’s How-To Guide for SBOM Generation provides the tag format (pg. 11) and

examples (pgs. 24-31)66

 ISO/IEC 5230:2020(en) Information technology – OpenChain Specification

 NTIA’s Tooling Ecosystem working with SPDX67

CycloneDX

o Tools - https://cyclonedx.org/tool-center/

o Information and Training

 OWASP – https://owasp.org/www-project-cyclonedx/

 OWASP – CycloneDX Learning Series68

 NTIA –Tooling Ecosystem working with CycloneDX69

SWID

o Tools

 NIST SWID Tools – https://pages.nist.gov/swid-tools.
 NTIA – Tooling Ecosystem working with SWID70.

o Information and Training

 NIST provides resources on Software Identification (SWID) tagging71 and tools72
to build and validate the SWID tags and post them to the NVD site such as swid-
builder, swid-maven-plugin, swidval and swid-repo-client.

 NTIA’s How – To Guide for SBOM Generation73 – SWID tag format (pg 17) and

examples (pgs. 24-25, 32-34)74.

 DevConf – Minting and Collecting SID Tags75.

General SBOM Information and Training

o Linux Foundation

 Linux Foundation Announces Software Bill of Materials (SBOM) Industry

Standard, Research, Training, and Tools to Improve Cybersecurity Practices76.

 Linux Foundation - Generating a Software Bill of Materials (LFC192)77.

66 https://www.ntia.gov/files/ntia/publications/howto_guide_for_SBOM_generation_v1.pdf
67 https://docs.google.com/document/d/1A1jFIYihB-IyT0gv7E_KoSjLbwNGmu_wOXBs6siemXA/edit
68 https://www.youtube.com/playlist?list=PLqjEqUxHjy1X9nGMcjS1ikwxFMZAB2uea
69 https://docs.google.com/document/d/1biwYXrtoRc_LF7Pw10TO2TGIhlM6jwkDG23nc9M_RiE/edit
70 https://docs.google.com/document/d/1oebYvHcOhtMG8Uhnd5he0l_vhty7MsTjp6fYCOwUmwM/edit
71 NIST Software Identification (SWID) Tagging, https://csrc.nist.gov/projects/Software-Identification-SWID
72 NIST Software Identification (SWID) Tools, https://pages.nist.gov/swid-tools/
73 https://docs.google.com/document/d/1oebYvHcOhtMG8Uhnd5he0l_vhty7MsTjp6fYCOwUmwM/edit
74 https://www.ntia.gov/files/ntia/publications/howto_guide_for_sbom_generation_v1.pdf,
75 https://www.youtube.com/watch?v=x86v5brZDfI
76 Linux Foundation Announces Software Bill of Materials (SBOM) Industry Standard, Research, Training, and Tools

to Improve Cybersecurity Practices https://linuxfoundation.org/press-release/linux-foundation-announces-
software-bill-of-materials-SBOM-industry-standard-research-training-and-tools-to-improve-cybersecurity-
practices/

77 https://training.linuxfoundation.org/training/generating-a-software-bill-of-materials-SBOM-lfc192/

https://pages.nist.gov/swid-tools
https://www.ntia.gov/files/ntia/publications/howto_guide_for_sbom_generation_v1.pdf
https://docs.google.com/document/d/1A1jFIYihB-IyT0gv7E_KoSjLbwNGmu_wOXBs6siemXA/edit
https://www.youtube.com/playlist?list=PLqjEqUxHjy1X9nGMcjS1ikwxFMZAB2uea
https://docs.google.com/document/d/1oebYvHcOhtMG8Uhnd5he0l_vhty7MsTjp6fYCOwUmwM/edit
https://csrc.nist.gov/projects/Software-Identification-SWID
https://pages.nist.gov/swid-tools/
https://docs.google.com/document/d/1oebYvHcOhtMG8Uhnd5he0l_vhty7MsTjp6fYCOwUmwM/edit
https://www.ntia.gov/files/ntia/publications/howto_guide_for_sbom_generation_v1.pdf
https://www.youtube.com/watch?v=x86v5brZDfI
https://linuxfoundation.org/press-release/linux-foundation-announces-software-bill-of-materials-sbom-industry-standard-research-training-and-tools-to-improve-cybersecurity-practices/
https://linuxfoundation.org/press-release/linux-foundation-announces-software-bill-of-materials-sbom-industry-standard-research-training-and-tools-to-improve-cybersecurity-practices/
https://linuxfoundation.org/press-release/linux-foundation-announces-software-bill-of-materials-sbom-industry-standard-research-training-and-tools-to-improve-cybersecurity-practices/
https://training.linuxfoundation.org/training/generating-a-software-bill-of-materials-sbom-lfc192/

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 29

 Overview of “Using Open-Source Code.”78

 Top Level – “Open-Source Best Practices for the Enterprise.”79

 Tools for Managing Open-Source Programs80.

o NTIA Software Bill of Materials listing of resources81.

o CISA Software Bill of Materials82.

o OpenChain Security Assurance Reference Guide83.

o OWASP Software Component Verification Standard (SCVS)84.

 Software Composition Analysis and the VEX Format

Generating or obtaining a SBOM for your application or software package is an important step

toward improving software security. Based on recent attacks, Tenable, a well-known security

company, has stated that once a vulnerability is found and disclosed, it only takes attackers 5.5 days

to exploit it. Therefore, quickly identifying new vulnerable software components in a software

package is essential, and automation is key to doing so quickly. SBOM generation tools should be

used within automation pipelines where possible. SBOM generation tools can work with software

security tools that can intake or generate SBOMs to support software component vulnerability

analysis or custom vulnerability database mapping techniques. The type of generation tools called

SCA tools can also support pipeline automation. Depending on the tool, SCA tools will try to analyze

an application’s dependencies for vulnerabilities and open-source license violations against

software vulnerability databases, such as the NVD, public bug trackers, security advisories, and

other sources. A best practice is to store SBOMs and verify them frequently, such as in each

iteration of the build cycle (see section 2.1.2 Product Evaluation85 subsection Recommended

mitigations).

In addition to off-the-shelf software, there are tools which may be used in specialized

environments, such as container images and applications. These tools can be used to process,

integrate, and evaluate SBOMs. For the latest information on SBOM and VEX, refer to the “Software

Bill of Materials | CISA”86” webpage. The “Featured Content” section highlights information on

available SBOM-related concepts and their sharing lifecycle as well as information on the minimum

78 https://www.linuxfoundation.org/tools/using-open-source-code/#policy
79 https://www.linuxfoundation.org/resources/open-source-guides/
80 https://www.linuxfoundation.org/tools/tools-managing-open-source-programs/#why-special-tools
81 https://www.ntia.gov/SBOM
82 https://www.cisa.gov/sbom
83 https://www.openchainproject.org/security-guide
84 https://owasp-scvs.gitbook.io/scvs/
85 https://media.defense.gov/2022/Nov/17/2003116445/-1/-

1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_CUSTOMER.PDF
86 CISA SBOM Workstreams, https://www.cisa.gov/sbom

https://www.linuxfoundation.org/tools/using-open-source-code/#policy
https://www.linuxfoundation.org/resources/open-source-guides/
https://www.linuxfoundation.org/tools/tools-managing-open-source-programs/#why-special-tools
https://www.ntia.gov/SBOM
https://www.cisa.gov/sbom
https://www.openchainproject.org/security-guide
https://owasp-scvs.gitbook.io/scvs/
https://media.defense.gov/2022/Nov/17/2003116445/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_CUSTOMER.PDF
https://media.defense.gov/2022/Nov/17/2003116445/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_CUSTOMER.PDF
https://www.cisa.gov/sbom

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 30

requirements for a VEX87. Workstreams are also available as part of this resource to assist in the

evolution and refinement of SBOM and VEX.88

In addition to the SBOM directive, the Executive Order directed the NIST to publish the Guidelines

on Minimum Standards for Developer Verification of Software89. The minimum standards include

SCA. The NIST guidelines reference a Dependency-Check90, an SCA tool that attempts to detect

publicly disclosed vulnerabilities within a project’s dependencies. Other tools include Maven, a

build automation and management tool that can provide a Project Object Model (POM) to help

Dependency-Check identify known vulnerable software components91.

Syft is a Command Line Interface (CLI) tool and library for generating a SBOM. Tools such as

OWASP Dependency-Track supports SBOM continuous monitoring to include the NVD, the

Sonatype OSS Index, NPM Advisories, and VulnDB from Risk Based Security as well as the VEX

content in security advisories.92

A VEX document provides a method to provide clarifying security information for components in a

specific software package’s SBOM which are marked as vulnerable. For example, if the vulnerable

part of an open-source component is inaccessible to attackers or removed and therefore cannot be

exploited, this could be listed in the VEX document that accompanies an SBOM. In this manner, VEX

provides additional context which may reduce the number of “false positive” vulnerabilities that a

vulnerability scanning tools would report against an SBOM due to the specific package instance. A

vendor could provide a package’s SBOM and VEX document online to support customer requests.

87 https://www.cisa.gov/resources-tools/resources/minimum-requirements-vulnerability-exploitability-
exchange-vex

88 https://www.cisa.gov/news-events/alerts/2023/11/06/cisa-published-when-issue-vex-information
89 https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8397.pdf
90 https://owasp.org/www-project-dependency-check/
91 Dependency Check & Maven https://jeremylong.github.io/DependencyCheck/dependency-check-maven/check-

mojo.html ; Dependency Check & Maven https://mvnrepository.com/artifact/org.owasp/dependency-check-
maven ; Dependency-Check Comparison (to Dependency-Track), https://docs.dependencytrack.org/odt-odc-
comparison/

92 NTIA, Vulnerability-Exploitability eXchange (VEX) - An Overview,
https://ntia.gov/files/ntia/publications/vex_one-page_summary.pdf

CISA, Vulnerability Exploitability eXchange (VEX) - Use Cases,

https://www.cisa.gov/sites/default/files/publications/VEX_Use_Cases_April2022.pdf

https://www.cisa.gov/resources-tools/resources/minimum-requirements-vulnerability-exploitability-exchange-vex
https://www.cisa.gov/resources-tools/resources/minimum-requirements-vulnerability-exploitability-exchange-vex
https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8397.pdf
https://owasp.org/www-project-dependency-check/
https://jeremylong.github.io/DependencyCheck/dependency-check-maven/check-mojo.html
https://jeremylong.github.io/DependencyCheck/dependency-check-maven/check-mojo.html
https://mvnrepository.com/artifact/org.owasp/dependency-check-maven
https://mvnrepository.com/artifact/org.owasp/dependency-check-maven
https://docs.dependencytrack.org/odt-odc-comparison/
https://docs.dependencytrack.org/odt-odc-comparison/
https://ntia.gov/files/ntia/publications/vex_one-page_summary.pdf
https://www.cisa.gov/sites/default/files/publications/VEX_Use_Cases_April2022.pdf

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 31

Figure 4: NTIA Framing Group – Framing NTIA Software Supply Chain Transparency93

Tools exist and continue to emerge that integrate data with a VEX to produce more intelligence

about the software and its risks. For example, CycloneDX and SPDX work with Dependency Check

and VEX, but the reader should be aware that feature support between various tools may vary.94

The SBOM community continues to enhance and refine SBOM implementation, with innovation

from across the software ecosystem and marketplace. There are also efforts to address gaps and

offer community guidance collectively. Check the CISA website dedicated to SBOM for the latest

information.95

 License and Export Control

Many of the use cases around SBOM predate security applications and were initially advocated to

better track and comply with the complexities around OSS licenses. A comprehensive and widely

used list of OSS licenses is maintained by the SPDX community, which supports machine-readability

and automation96. The information and tools listed below support automation of SBOM formats for

93 NTIA Framing Group – Framing NTIA Software Supply Chain Transparency,
https://www.ntia.doc.gov/files/ntia/publications/framing_2021-04-29_002.pdf

Adolus, What is VEX and What Does it Have to Do with SBOMS?, https://blog.adolus.com/what-is-vex-and-

what-does-it-have-to-do-with-sboms
94 https://github.com/CycloneDX/cyclonedx-maven-plugin and https://cyclonedx.org/capabilities/vex/
95 CISA, Software Bill of Materials, https://www.cisa.gov/SBOM
96 https://spdx.org/licenses/

https://www.ntia.doc.gov/files/ntia/publications/framing_2021-04-29_002.pdf
https://blog.adolus.com/what-is-vex-and-what-does-it-have-to-do-with-sboms
https://blog.adolus.com/what-is-vex-and-what-does-it-have-to-do-with-sboms
https://github.com/CycloneDX/cyclonedx-maven-plugin
https://cyclonedx.org/capabilities/vex/
https://www.cisa.gov/sbom
https://spdx.org/licenses/

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 32

license and export compliance assessment for projects using OSS. The Linux Foundation maintains

the OpenChain97 ISO/IEC 5260 International Standard for open-source license compliance98.

SPDX

There are several tools to help with license and export control verification for SPDX.

 The Linux Foundation provides an automated license compliance tool, FOSSology99, which

itself is an open-source tool and should be managed as internally developed code.

FOSSology is a license compliance software system and toolkit for license, copyright and

export control scans. The SPDX Online Tool100 validates SPDX formatted SBOM file types and

can verify licenses are compatible with an organization’s policy.

 Tools such as Cybeats SBOM Studio include license verification and security assessment.

CycloneDX

CycloneDX provides a variety of tools for managing and using CycloneDX SBOMs, including license

verification101.

 Cybeats SBOM Studio102.

 NTIA, Tooling Ecosystem working with CycloneDX103.

 CycloneDX SBOM’s can also be converted into SPDX-compatible SBOMs with the CycloneDX

CLI104 and the cdx2spdx tool105 so that the SPDX FOSSology106 tool can automate license

compliance.

SWID

The NIST provides resources on SWID tagging and tools to build and validate SWID tags such as
swid-builder, swid-maven-plugin, swidval and swid-repo-client107.

SWID is supported by the Internet Engineering Task Force (IETF) who provides the Concise
Software Identification Tags guidance.108

97 https://www.openchainproject.org ; https://www.openchainproject.org/security-guide
98 https://www.linuxfoundation.org/resources/publications/understanding-us-export-controls-with-open-

source-projects
99 https://www.fossology.org

100 https://www.tools.spdx.org/app/validate/
101 https://www.cyclonedx.org/tool-center/
102 https://www.cybeats.com/sbom-studio
103 NTIA, https://docs.google.com/document/d/1biwYXrtoRc_LF7Pw10TO2TGIhlM6jwkDG23nc9M_RiE/edit
104 CycloneDX CLI https://github.com/CycloneDX/cyclonedx-cli
105 Cdx2spdx tool https://github.com/spdx/cdx2spdx
106 https://www.fossology.org
107 https://csrc.nist.gov/projects/Software-Identification-SWID ; https://pages.nist.gov/swid-tools/ ;

https://nvd.nist.gov/
108 https://datatracker.ietf.org/doc/draft-ietf-sacm-coswid/

https://www.openchainproject.org/security-guide
https://www.linuxfoundation.org/resources/publications/understanding-us-export-controls-with-open-source-projects
https://www.linuxfoundation.org/resources/publications/understanding-us-export-controls-with-open-source-projects
https://www.fossology.org/
https://www.tools.spdx.org/app/validate/
https://www.cyclonedx.org/tool-center/
https://www.cybeats.com/sbom-studio
https://docs.google.com/document/d/1biwYXrtoRc_LF7Pw10TO2TGIhlM6jwkDG23nc9M_RiE/edit
https://github.com/CycloneDX/cyclonedx-cli
https://github.com/spdx/cdx2spdx
https://www.fossology.org/
https://csrc.nist.gov/projects/Software-Identification-SWID
https://pages.nist.gov/swid-tools/
https://nvd.nist.gov/
https://datatracker.ietf.org/doc/draft-ietf-sacm-coswid/

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 33

The SPDX tool page109 lists the CyberProtek tool110 to convert the SWID format to SPDX. Once in the

SPDX format, the FOSSology tool111 can be leveraged for automation.

The below tools will translate between SBOM formats.112

 SwiftBOM - SPDX (.spdx), SWID (Extensible Markup Language (.xml)), CycloneDX (.xml,

JavaScript Object Notation (.json))

o Demo at https://democert.org/sbom/

o Source code at https://github.com/CERTCC/SBOM/tree/master/sbom-demo

 DecoderRing - SPDX (.spdx), SWID(.xml)
o Source code at https://github.com/DanBeard/DecoderRing

 SPDX tools - SPDX (.spdx, json, yaml, rdf, xml, xls)

o Demo at https://tools.spdx.org/app/

o Source code at https://github.com/spdx/spdx-online-tools

 CycloneDX CLI - CycloneDX (.xml, .json), SPDX (.spdx)

o Source code at https://github.com/CylconeDx/cyclonedx-cli

 Software Bill of Materials Validation

Examples of SBOM Validation & Verification tools can be found in NTIA’s “Software Suppliers
Playbook: SBOM Production and Provision guidance113 (page 8):

 Validation of SBOM Format

o SPDX Online Tool validates SPDX format SBOMs and converts between SPDX SBOM

file types and checks licenses - https://tools.spdx.org/app/validate/

o SWID Tools - https://pages.nist.gov/swid-tools/swidval/.

o CycloneDX CLI Tool and Web Tool validates CycloneDX format SBOMs -

https://github.com/CycloneDX/cyclonedx-cli/;

https://cyclonedx.github.io/cyclonedx-web-tool/.

5.2 Supplier Activities

Suppliers define policy and validate the integrity of the product using an SBOM that follows one of

the standard formats defined in section 2.4 “SBOM Overview” above. A supplier, as defined in

section 2.0 of the Securing the Software Supply Chain for Suppliers114, provides a software package,

whether it is a development group in smaller companies, or higher-level management that oversees

development teams within a larger company, as defined in section 2 of the Securing the Software

109 https://spdx.dev/tools-commercial/
110 https://cyberprotek.com
111 https://www.fossology.org
112 https://www.ntia.doc.gov/files/ntia/publications/ntia_sbom_formats_energy_brief_2021.pdf
113 NTIA, Software Suppliers Playbook: SBOM Production and Provision,

https://www.ntia.gov/files/ntia/publications/software_suppliers_sbom_production_and_provision_-_final.pdf
114 https://media.defense.gov/2022/Oct/31/2003105368/-1/-

1/0/SECURING_THE_SOFTWARE_SUPPLY_CHAIN_SUPPLIERS.PDF

https://democert.org/sbom/
https://github.com/CERTCC/SBOM/tree/master/sbom-demo
https://github.com/DanBeard/DecoderRing
https://tools.spdx.org/app/
https://github.com/spdx/spdx-online-tools
https://github.com/CylconeDx/cyclonedx-cli
https://tools.spdx.org/app/validate/
https://pages.nist.gov/swid-tools/swidval/
https://github.com/CycloneDX/cyclonedx-cli/
https://cyclonedx.github.io/cyclonedx-web-tool/
https://spdx.dev/tools-commercial/
https://cyberprotek.com/
https://www.fossology.org/
https://www.ntia.doc.gov/files/ntia/publications/ntia_sbom_formats_energy_brief_2021.pdf
https://www.ntia.gov/files/ntia/publications/software_suppliers_sbom_production_and_provision_-_final.pdf
https://media.defense.gov/2022/Oct/31/2003105368/-1/-1/0/SECURING_THE_SOFTWARE_SUPPLY_CHAIN_SUPPLIERS.PDF
https://media.defense.gov/2022/Oct/31/2003105368/-1/-1/0/SECURING_THE_SOFTWARE_SUPPLY_CHAIN_SUPPLIERS.PDF

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 34

Supply Chain for Developers115, who delivers their own product or a repackaged product. Third-

party software information is also included, as described in section 3.1 “Open-Source Software

Adoption Process,” this may include the origin of the software to include the company/organization

and possibly the country when meaningful. Additional information that may also be included within

an SBOM, but not necessarily required today, are licensing and export information. The validation

process should ensure the minimum elements, as defined in the NTIA “The Minimum Elements For a

Software Bill of Materials (SBOM)” or successor CISA documents are met. Once validated using the

techniques defined in section 5.1.5 “SBOM Validation,” the SBOM is made available to customers

with the shipping products using various methods listed in section 4.3.2 “Secure Software Delivery.”

Suppliers should continuously scan for vulnerabilities within their products which includes third-

party components. When vulnerabilities are found they should be addressed and the associated

SBOM and VEX should be updated and provided to customers, refer to section 5.1.3 “Software

Composition Analysis and the VEX Format” for more details. Suppliers also need to be aware of and

track the latest developments for open-source management and the use of SBOMs using the

guidelines given by the Cybersecurity and Infrastructure Security Agency (CISA), refer to “Appendix

A: Ongoing Efforts.”

 Software Bill of Materials Validation and Verification Tools

The SBOM and its contents must be validated and verified. Validation assures that the SBOM data is

appropriately formatted and can be integrated into various tools and automation. Verification

ensures the content within the SBOM is accurately described and all components and related

information on a product for licensing and exporting are represented.

Many organizations are increasingly incorporating tools into the build and source repository

facility to automate this process and provide artifacts which can attest to the verification of the

SBOM being delivered. Both the content of the package, the executables, libraries and configuration

files, and the actual format of the SBOM, should be validated. Any open-source software

components should be verified for license or export restrictions. In some organizations, validation

is performed first by the developer during build/packing of the product and then by the

developer/supplier before customer delivery to verify the integrity of the SBOM being delivered.

For more information on the formats and tools available for validation, refer to section 5.1.5 of this

document “SBOM Validation.”

A good reference on guidance for the SBOM process can be found in NTIA’s publication “Software

Suppliers Playbook: SBOM Production and Provision”116 guidance. It is important that developers

understand the end-user requirements for SBOM generation and how this information might be

used by both suppliers and customers. Additional process information relating to SBOMs and

acquisitions can be found in the “Software Consumers Playbook: SBOM Acquisition, Management, and

Use”117.

115 https://media.defense.gov/2022/Sep/01/2003068942/-1/-
1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF

116 https://www.ntia.gov/files/ntia/publications/software_suppliers_sbom_production_and_provision_-_final.pdf
117 https://www.ntia.gov/files/ntia/publications/software_consumers_sbom_acquisition_management_and_use_-

_final.pdf

https://media.defense.gov/2022/Sep/01/2003068942/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
https://media.defense.gov/2022/Sep/01/2003068942/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
https://www.ntia.gov/files/ntia/publications/software_suppliers_sbom_production_and_provision_-_final.pdf
https://www.ntia.gov/files/ntia/publications/software_consumers_sbom_acquisition_management_and_use_-_final.pdf
https://www.ntia.gov/files/ntia/publications/software_consumers_sbom_acquisition_management_and_use_-_final.pdf

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 35

Appendix A: Ongoing Efforts

Suppliers and developers should be aware of and track the latest developments for open-source
management and the use of SBOMs using the guidelines from the Cybersecurity and Infrastructure

Security Agency (CISA). The NTIA’s multi-stakeholder working groups facilitated the development

of foundational SBOM-related documents, many of which are referenced in this guidance and can be

found at https://ntia.gov/SoftwareTransparency. The NTIA’s work continues through a series of

community-led workstreams facilitated by CISA focused on the following topics :

 Cloud and Online Applications – integrating current understanding around SBOM into

the context of online applications and modern infrastructure.

 On-Ramps and Adoption – promoting education and awareness to help lower the costs

and complexities of adoption, allowing newer or less mature organizations to provide,

request, and use SBOMs to secure and understand their organization’s risk.

 Sharing and Exchanging – concepts related to moving SBOMs, and related metadata,

across the software supply chain.

 Tooling and Implementation – opportunities and challenges for automating the SBOM

ecosystem.

CISA also facilitates VEX-related discussions with the SBOM community and has published white

papers on defining VEX minimum elements, use cases, and status justifications.

Additional information, including schedules and how to participate in the workstreams and the

production of VEX white papers, visit https://www.cisa.gov/sbom.

Correspondingly, the information in this document will continually evolve due to the complexity

and urgency of securing the software supply chain for a vast number of stakeholders and

environments. Some of the areas to monitor the CISA website for updated guidance and

clarification are the following:

 Validating an SBOM is complex. Developers, suppliers and consumers may not have the

same ability to generate and compare SBOMs delivered for a product. Indeed, for

complex software, the “true” SBOM may vary across the lifecycle of development, build,

deployment, and run. A base set of common criteria to include a minimum set of

elements within an SBOM, the formats used to describe information and the “definitions”

used in identifying the meaning of the elements may evolve into a more meaningful data

set as the integration of the current standards are adopted by a wide variety of

consumers and their unique environments.

 The frequency of SBOM updates and the life cycle of an SBOM is evolving over time.

While it is envisioned that SBOMs may be used to evaluate the risk associated with a

product as input to future adoption decisions, it is also envisioned that they may provide

valuable threat management capabilities over the life cycle of the products they describe.

The frequency of SBOM updates needs to be considered in this discussion as cloud and

automated product update procedures may change product composition and these

changes need to be reflected in “updated” SBOMs. Many modern organizations have daily

or hourly builds. The update paradigm of both the software update process and its

https://ntia.gov/SoftwareTransparency
https://www.cisa.gov/sbom

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 36

associated SBOM needs to be clearly understood, specifically by the customers who may

receive them. How component modifications are reflected in an SBOM, and whether

these changes are reflected by supplying a completely new, all-inclusive SBOM or just a

partial SBOM update for the component modified needs to be clearly understood. In

addition, a means to determine the differences between two or more SBOMs may be

required to allow the ability to calculate the risk associated with the specific changes

within a product due to the update, if any.

 Care should be taken to ensure SBOMs are created that reflect the composition of the

product they describe. Depending on the environment the SBOM is created in, for

example a software appliance, the necessary tools required to automatically generate an

SBOM may require additional packages to be installed to perform this operation.

Packages and tools used solely for the support of SBOM creation, should only be reflected

in the document creation section of an SBOM, but not included as contents/package

information in the final SBOM produced. In addition, the SBOM tools incorporated and

used within a product environment should undergo the same risk assessment and

adoption process as detailed for OSS components.

 Finally, strategies outlined in the SSDF should be used to manage identity and access

control with respect to the generation, signing, updating and distribution of SBOMS for

specific products. Some of the key considerations identified are:

o Implement Roles and Responsibilities (PO.2)

o Implement and Maintain Secure Environments for Software Development (PO.5)

o Protect All Forms of Code from Unauthorized Access and Tampering (PS.1)

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 37

Appendix B: Secure Supply Chain Consumption Framework (S2C2F)

A Secure Supply Chain Consumption Framework (S2C2F) is a threat-based risk reduction
framework that is focused on securing how developers consume open-source software into the

developer’s workflow. Microsoft has been implementing the framework since 2019 and continues

to lead the S2C2F SIG within the OpenSSF (https://github.com/ossf/s2c2f).

S2C2F Requirements

Below is a table of the requirements mapped to the 8 different S2C2F practices. Two of the

requirements have prerequisites identified that are outside the scope of the S2C2F.

Practice
Requirement

ID
Maturity

Level
Requirement Title Benefit

Ingest it ING-1 L1 Use package managers
trusted by your
organization118

Your organization benefits
from the inherent security
provided by the package
manager

 ING-2 L1 Use an OSS binary
repository manager
solution

Caches a local copy of the OSS
artifact and protects against
left-pad incidents, enabling
developers to continue to
build even if upstream
resources are unavailable

 ING-3 L3 Have a Deny List
capability to block
known malicious OSS
from being consumed

Prevents ingestion of known
malware by blocking
ingestion as soon as a
critically vulnerable OSS
component is identified, such
as colors v 1.4.1, or if an OSS
component is deemed
malicious

 ING-4 L3 Mirror a copy of all OSS
source code to an
internal location

Supports Business Continuity
and Disaster Recovery
(BCDR) scenarios. Also
enables proactive security
scanning, fix it scenarios, and
the ability to rebuild OSS in a
trusted build environment

118 https://opensource.com/article/20/11/trust-package

https://github.com/ossf/s2c2f
https://www.theregister.com/2016/03/23/npm_left_pad_chaos/
https://security.snyk.io/vuln/SNYK-JS-COLORS-2331906
https://opensource.com/article/20/11/trust-package

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 38

Practice
Requirement

ID
Maturity

Level
Requirement Title Benefit

Scan It SCA-1 L1 Scan OSS for known
vulnerabilities (i.e., CVEs,
GitHub Advisories, etc.)

Able to update OSS to reduce
risks

 SCA-2 L1 Scan OSS for licenses Ensures your organization
remains in compliance with
the software license

 SCA-3 L2 Scan OSS to determine if
its end-of-life

For security purposes, no
organization should take a
dependency on software that
is no longer receiving
updates

 SCA-4 L3 Scan OSS for malware Able to prevent ingestion of
malware into your CI/CD
environment

 SCA-5 L3 Perform proactive
security review of OSS

Identify zero-day
vulnerabilities and
confidentially contribute fixes
back to the upstream
maintainer

Inventory
It

INV-1 L1 Maintain an automated
inventory of all OSS used
in development

Able to respond to incidents
by knowing who is using
what OSS where. This can
also be accomplished by
generating SBOMs for your
software

 INV-2 L2 Have an OSS Incident
Response Plan

This is a defined, repeatable
process that enables your
organization to quickly
respond to reported OSS
incidents

Update It UPD-1 L1 Update vulnerable OSS
manually

Ability to resolve
vulnerabilities

 UPD-2 L2 Enable automated OSS
updates

Improve MTTR to patch
faster than adversaries can
operate

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 39

Practice
Requirement

ID
Maturity

Level
Requirement Title Benefit

 UPD-3 L2 Display OSS
vulnerabilities as
comments in Pull
Requests (PRs)

 Prerequisite: Two-
person PR reviews
are enforced.

PR reviewer doesn’t want to
approve knowing that there
are unaddressed
vulnerabilities

Audit It AUD-1 L3 Verify the provenance of
your OSS

Able to track that a given OSS
package traces back to a repo

 AUD-2 L2 Audit that developers are
consuming OSS through
the approved ingestion
method

Detect when developers
consume OSS that isn’t
detected by your inventory or
scan tools

 AUD-3 L2 Validate integrity of the
OSS that you consume
into your build

Validate digital signature or
hash match for each
component

 AUD-4 L4 Validate SBOMs of OSS
that you consume into
your build

Validate SBOM for
provenance data,
dependencies, and its digital
signature for SBOM integrity

Enforce It ENF-1 L2 Securely configure your
package source files (i.e.,
nuget.config, npmrc,
pip.conf, pom.xml, etc.)

By using NuGet package
source mapping, or a single
upstream feed, or using
version pinning and lock files,
you can protect yourself from
race conditions and
Dependency Confusion
attacks

 ENF-2 L3 Enforce usage of a
curated OSS feed that
enhances the trust of
your OSS

Curated OSS feeds can be
systems that scan OSS for
malware, validate claims-
metadata about the
component, or systems that
enforce an allow/deny list.
Developers should not be
allowed to consume OSS
outside of the curated OSS
feed

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 40

Practice
Requirement

ID
Maturity

Level
Requirement Title Benefit

Rebuild It REB-1 L4 Rebuild the OSS in a
trusted build
environment, or validate
that it is reproducibly
built

 Prerequisite:
Sufficient build
integrity measures
are in place to
establish a trusted
build environment

Mitigates against build-time
attacks such as those seen on
CCleaner and SolarWinds.
Open-Source developers
could introduce scripts or
code that aren’t present in
the repository into the build
process or be building in a
compromised environment

 REB-2 L4 Digitally sign the OSS you
rebuild

Protects the integrity of the
OSS you use

 REB-3 L4 Generate SBOMs for OSS
that you rebuild

Captures the supply chain
information for each package
to enable you to better
maintain your dependencies,
auditability, and blast radius
assessments

 REB-4 L4 Digitally sign the SBOMs
you produce

Ensures that consumers of
your SBOMs can trust that the
contents have not been
tampered with

Fix It +
Upstream

FIX-1 L4 Implement a change in
the code to address a
zero-day vulnerability,
rebuild, deploy to your
organization, and
confidentially contribute
the fix to the upstream
maintainer

To be used only in extreme
circumstances when the risk
is too great and to be used
temporarily until the
upstream maintainer issues a
fix

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 41

Appendix C: References

1. Presidential Executive Order (10428) on Improving the Nation’s Cybersecurity,
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-

order-on-improving-the-nations-cybersecurity/

2. NTIA The Minimum Elements For a Software Bill of Materials (SBOM)

https://www.ntia.doc.gov/files/ntia/publications/SBOM_minimum_elements_report.pdf

3. SPDX, https://spdx.dev/ (last visited May 18, 2021).

4. CycloneDX, https://cyclonedx.org/ (last visited May 18, 2021).

5. See David Waltermire et al., Guidelines for the Creation of Interoperable Software Identification

(SWID) Tags (2016) (Nat’l Inst. of Standards & Tech. Internal Rep. 8060),

http://dx.doi.org/10.6028/NIST.IR.8060 (SWID tags are defined by ISO/IEC 19770–2:2015).

6. Linux Foundation Announces Software Bill of Materials (SBOM) Industry Standard, Research,

Training, and Tools to Improve Cybersecurity Practices https://linuxfoundation.org/press-

release/linux-foundation-announces-software-bill-of-materials-SBOM-industry-standard-

research-training-and-tools-to-improve-cybersecurity-practices/

7. https://training.linuxfoundation.org/training/generating-a-software-bill-of-materials-SBOM-

lfc192/

8. Linux Foundation, Overview of “Using Open Source Code”,

https://www.linuxfoundation.org/tools/using-open-source-code/#policy

9. Linux Foundation, Top Level - “Open Source Best Practices for the Enterprise”,

https://www.linuxfoundation.org/resources/open-source-guides/

10. Linux Foundation, Tools for Managing Open Source Programs -

https://www.linuxfoundation.org/tools/tools-managing-open-source-programs/#why-special-

tools

11. NTIA, Software Suppliers Playbook: SBOM Production and Provision,

https://www.ntia.gov/files/ntia/publications/software_suppliers_SBOM_production_and_provi

sion_-_final.pdf

12. Software Consumers Playbook: SBOM Acquisition, Management, and Use,

https://docs.google.com/document/d/1Ae0l1MDS8m1on58e8mdVIA9NujzPD0k5j352VlDZr9I

/edit#heading=h.xgt811s3780y

13. Tenable, https://www.wsj.com/articles/cyber-matters-heed-the-window-of-opportunity-

1527115463

14. NIST Guidelines on Minimum Standards for Developer Verification of Software

https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8397.pdf

15. OWASP, Dependency Check - https://owasp.org/www-project-dependency-check/

16. Dependency Check & Maven https://jeremylong.github.io/DependencyCheck/dependency-

check-maven/check-mojo.html

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://spdx.dev/
https://cyclonedx.org/
http://dx.doi.org/10.6028/NIST.IR.8060
https://linuxfoundation.org/press-release/linux-foundation-announces-software-bill-of-materials-sbom-industry-standard-research-training-and-tools-to-improve-cybersecurity-practices/
https://linuxfoundation.org/press-release/linux-foundation-announces-software-bill-of-materials-sbom-industry-standard-research-training-and-tools-to-improve-cybersecurity-practices/
https://linuxfoundation.org/press-release/linux-foundation-announces-software-bill-of-materials-sbom-industry-standard-research-training-and-tools-to-improve-cybersecurity-practices/
https://training.linuxfoundation.org/training/generating-a-software-bill-of-materials-sbom-lfc192/
https://training.linuxfoundation.org/training/generating-a-software-bill-of-materials-sbom-lfc192/
https://www.linuxfoundation.org/tools/using-open-source-code/#policy
https://www.linuxfoundation.org/resources/open-source-guides/
https://www.linuxfoundation.org/tools/tools-managing-open-source-programs/#why-special-tools
https://www.linuxfoundation.org/tools/tools-managing-open-source-programs/#why-special-tools
https://www.ntia.gov/files/ntia/publications/software_suppliers_sbom_production_and_provision_-_final.pdf
https://www.ntia.gov/files/ntia/publications/software_suppliers_sbom_production_and_provision_-_final.pdf
https://docs.google.com/document/d/1Ae0l1MDS8m1on58e8mdVIA9NujzPD0k5j352VlDZr9I/edit#heading=h.xgt811s3780y
https://docs.google.com/document/d/1Ae0l1MDS8m1on58e8mdVIA9NujzPD0k5j352VlDZr9I/edit#heading=h.xgt811s3780y
https://www.wsj.com/articles/cyber-matters-heed-the-window-of-opportunity-1527115463
https://www.wsj.com/articles/cyber-matters-heed-the-window-of-opportunity-1527115463
https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8397.pdf
https://owasp.org/www-project-dependency-check/
https://jeremylong.github.io/DependencyCheck/dependency-check-maven/check-mojo.html
https://jeremylong.github.io/DependencyCheck/dependency-check-maven/check-mojo.html

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 42

17. Dependency Check & Maven https://mvnrepository.com/artifact/org.owasp/dependency-

check-maven

18. Dependency-Check Comparison (to Dependency-Track), https://docs.dependencytrack.org/odt-

odc-comparison/

19. NTIA, Vulnerability-Exploitability eXchange (VEX) - An Overview,

https://ntia.gov/files/ntia/publications/vex_one-page_summary.pdf

20. CISA, Vulnerability Exploitability eXchange (VEX) - Use Cases,

https://www.cisa.gov/sites/default/files/publications/VEX_Use_Cases_April2022.pdf

21. NTIA Framing Group – Framing NTIA Software Supply Chain Transparency,

https://www.ntia.doc.gov/files/ntia/publications/framing_2021-04-29_002.pdf

22. Digital Bill of Materials (DBoM) Consortium is a Linux Foundation project that maintains a

digital common place where SBOM and other BOM information can be stored in defined

taxonomies and accessed using defined policies. https://dbom.io/

23. CISA, Software Bill of Materials, https://www.cisa.gov/SBOM

24. NIST Security Considerations for Code Signing, https://csrc.nist.gov/publications/detail/white-

paper/2018/01/26/security-considerations-for-code-signing/final

25. CA Security Code Signing Whitepaper, https://casecurity.org/wp-

content/uploads/2016/12/CASC-Code-Signing.pdf

26. Linux Foundation, 2022. “Secure Supply Chain Consumption Framework (S2C2F).” Available at

(https://github.com/ossf/s2c2f)

https://mvnrepository.com/artifact/org.owasp/dependency-check-maven
https://mvnrepository.com/artifact/org.owasp/dependency-check-maven
https://docs.dependencytrack.org/odt-odc-comparison/
https://docs.dependencytrack.org/odt-odc-comparison/
https://ntia.gov/files/ntia/publications/vex_one-page_summary.pdf
https://www.cisa.gov/sites/default/files/publications/VEX_Use_Cases_April2022.pdf
https://www.ntia.doc.gov/files/ntia/publications/framing_2021-04-29_002.pdf
https://dbom.io/
https://dbom.io/
https://www.cisa.gov/sbom
https://csrc.nist.gov/publications/detail/white-paper/2018/01/26/security-considerations-for-code-signing/final
https://csrc.nist.gov/publications/detail/white-paper/2018/01/26/security-considerations-for-code-signing/final
https://casecurity.org/wp-content/uploads/2016/12/CASC-Code-Signing.pdf
https://casecurity.org/wp-content/uploads/2016/12/CASC-Code-Signing.pdf
https://github.com/ossf/s2c2f

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 43

Appendix D: Acronym List

Acronym Expansion

CA Certificate Authority

CCL Commercial Control List

CI Continuous Integration

CIPAC Critical Infrastructure Partnership Advisory Council

CISA Cybersecurity and Infrastructure Security Agency

CLI Command-Line Interface

CMT Crisis Management Team

CNSS Committee on National Security Systems

CSAF Common Security Advisory Framework

CSP Cloud Service Provider

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

DBOM Digital Bill of Materials

EAR Export Administration Regulations

ECDSA Elliptic Curve Digital Signature Algorithm

EO Executive Order

EPSS Exploit Prediction Scoring System

ESF Enduring Security Framework

EU European Union

FIPS Federal Information Processing Standards

HSM Hardware Security Module

IAM Identity and Access Management

IETF Internet Engineering Task Force

ISO/IEC
International Organization for Standardization/International Electrotechnical
Commission

json JavaScript Object Notation

KEV Known Exploited Vulnerabilities

NIST National Institute of Standards and Technology

npm Node Package Manager

NSA National Security Agency

NTIA National Telecommunications and Information Administration

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 44

Acronym Expansion

NVD National Vulnerability Database

ODM Original Device Manufacturers

ODNI Office of the Director of National Intelligence

OEM Original Equipment Manufacturers

ONCD Office of the National Cyber Director

OMB Office of Management and Budget

OpenSSF Open-Source Security Foundation

OSRB Open-Source Review Board

OSS Open-Source Software

OWASP Open Web Application Security Project

PII Personally Identifiable Information

PKI Public Key Infrastructure

PO Prepare the Organization

POM Project Object Model

PQC Post Quantum Cryptography

PRT Product Response Team

PS Protect the Software

PW Produce Well-Secured Software

RSA Rivest-Shamir-Adleman

RV Respond to Vulnerabilities

S2C2F Secure Supply Chain Consumption Framework

SAST Static Analysis

SaaS Software as a Service

SaaSBOM Software as a Service Bill of Materials

SBOM Software Bill of Materials

SCA Software Composition Analysis

SDLC Software Development Life Cycle

SOUP Software of Unknown Provenance

SP Special Publication

SSDF Secure Software Development Framework

SSVC Specific Vulnerability Categorization

SWID Software Identification

TTPs Tactics, Techniques, And Procedures

Securing the Software Supply Chain: Recommended Practices for Managing OSS and SBOMs 45

Acronym Expansion

U.S. United States

VAR Value-Added Reseller

VEX Vulnerability Exploitability eXchange

XML Extensible Markup Language

